期刊文献+

Theoretical Studies on Electronic Structures and Spectroscopy of Fluorescent Arylamino Fumaronitrile

Theoretical Studies on Electronic Structures and Spectroscopy of Fluorescent Arylamino Fumaronitrile
下载PDF
导出
摘要 一个新系列荧光灯 arylamino fumarinitrile 衍生物被设计并且优化了在 B3LYP/6-31G 使用密度功能理论 * 水平。基于优化几何学,电子,荧光灯并且 13C NMR 系列与 INDO/CIS, CIS-ZINDO TD,和 B3LYP/6-31G 被计算 * 方法分别地。以第一个系列开始,衍生物的 LUMO 人精力差距变得更宽并且荧光灯在电子系列的波长和主要山峰由于 naphthyl 戒指的大位的效果是转移蓝色的。相反,衍生物的精力差距变得狭窄,并且荧光灯自从氢氧根组改进对称并且扩大变化形式系统,在电子系列的波长和主要山峰是转移红的。苯基戒指上的 sp2-C 的化学移动是移动 upfield,当 cyano 组和那些上的碳原子的化学移动与 cyano 组一起连接了时面对氢氧根组是改变的 downfield。 A new series of fluorescent arylamino fumarinitrile derivatives was designed and optimized using density function theory at the B3LYP/6-31G^* level. Based on the optimized geometries, the electronic, fluorescent and 13C NMR spectra are calculated with INDO/CIS, CIS-ZINDO TD, and B3LYP/6-31G^* methods, respectively. Starting with the first of the series, the LUMO-HOMO energy gaps of the derivatives become wider and the fluorescent wavelengths and the main peaks in the electronic spectra are blue-shifted owing to the large steric effect of naphthyl rings. On the contrary, the energy gaps of the derivatives turn narrow, and the fluorescent wavelengths and the main peaks in the electronic spectra are red-shifted since hydroxyl groups improve the symmetry and extend the conjugation system. The chemical shifts of sp^2-C on the phenyl rings are moved upfield, while chemical shifts of carbon atoms on the cyano groups and those connected with the cyano groups are changed downfield in the presence of hydroxyl groups.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第2期105-110,共6页 化学物理学报(英文)
关键词 电子结构 荧光光谱学 最优化设计 密度泛函数理论 Arylamino fumaronitrile, Fluorescence, Energy gap, B3LYP/6-31G^*
  • 相关文献

参考文献28

  • 1J. Li, C. Ma, J. Tang, C. S. Lee, and S. Lee, Chem. Mater. 17, 615 (2005).
  • 2S. W. Culligan, A. C. A. Chen, J. U. Wallace, K. P. Klubek, C. W. Tang, and S. H Chen, Adv. Funet. Mater. 16, 1481 (2006).
  • 3S. Kato, J. Am. Chem. Soc. 127, 11538 (2005).
  • 4E. Bacher, M. Bayerl, P. Rudati. N. Reckefuss, C. D. Muller, K. Meerholz, and O. Nuyken. Macromolecules 38, 1640 (2005).
  • 5J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner, and T. J. Marks, Nano Lett. 6, 2472 (2006).
  • 6K. T. Wong, Y. M. Chen, Y. T. Lin. H. C. Su, and C. C. Wu, Org. Lett. 7, 5361 (2005).
  • 7H.C. Yeh, S. J. Yeh, and C. T. Chen. Chem. Commum. 2632 (2003).
  • 8W. C. Wu, H.C. Yeh, L. H. Chan, and C. T. Chen, Adv. Mater. 14, 1072 (2002).
  • 9Q. Huang, J. Li, O. A. Evmenenko. P. Dutta, and T. J. Marks, Chem. Mater. 18, 2431 (2006).
  • 10Z. H. Li and M. S. Wong, Org. Lett. 8, 1499 (2006).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部