期刊文献+

基于动态概率主元分析的统计过程监测

Process monitoring based on dynamic probabiUstic principal component analysis
原文传递
导出
摘要 概率主元分析(PPCA)已广泛应用于工业过程监测。然而,PPCA法仅构造了生产过程的静态线性关系,处理具有较强动态特性的实际工业生产过程效果较差。为此提出动态概率主元分析(DPPCA)法,对经过时谱扩展后的变量数据阵.通过期望最大化(EM)算法建立生成模型,从而将静态PPCA推广到动态多变量过程。最后将此法应用于TE过程的仿真研究.结果表明该法有效。 Probabilistic Principal Component Analysis(PPCA) has been widely used for monitoring industrial process. However,PPCA only constructs linear static relations among the process variables, it can't effectively deal with the real industrial process which possesses strong dynamic characteristic. Using the expectation and maximization (EM) algorithm, the dynamic PPCA model is built to cope with the data matrix extended by time series. According to the technique, static PPCA can be extended to monitor dynamic multivariate process. At last, the simulation results of TE process reveal this method is very effective.
作者 杨沛武 刘飞
出处 《计算机与应用化学》 CAS CSCD 北大核心 2008年第4期405-408,共4页 Computers and Applied Chemistry
基金 国家高技术研究发展计划(863计划)资助项目(2006AA020204) 教育部新世纪优秀人才支持计划(NCET-05-0485)
关键词 过程监测 动态概率主元分析 EM算法 process monitoring, dynamic probabilistic principal component analysis, EM algorithm
  • 相关文献

参考文献4

二级参考文献20

  • 1Zhang J,Chem Eng J,1997年,67卷,3期,181页
  • 2方开泰,实用多元统计分析,1989年
  • 3杨位钦,时间序列分析与动态数据建模,1988年
  • 4Lin WL,Qian Y and Li XX.Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis.Computers and Chemical Engineering,2000,24: 423-429.
  • 5Nomikos P and MacGregor JF.Monitoring batch processes using multiway principal component analysis.AIChE Journal,1994,40(8): 1361-1375.
  • 6Ku WF,Storer RH and Georgakis C.Disturbance detection and isolation by dynamic principal component analysis.Chemometics and Intelligent Laboratory Systems,1995,30: 179-196.
  • 7Bakshi BR.Multiscale PCA with application to multivariate statistical process monitoring.AIChE Journal,1998,44(7): 1596-1610.
  • 8Downs JJ and Vogel EF.A plant-wide industrial process control problem.Computers and Chemical Engineering,1993,17(3): 245-255.
  • 9张杰,等.多变量统计过程控制.北京:化学工业出版社,2000.
  • 10Paul Nomikos and MacGregor J F.Monitoring batch processes using multi-way principal component analysis.American Institute of Chemical Engineers Journal,40(8),1994,1361-1375.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部