期刊文献+

一类预条件AOR方法的比较性定理

Some Comparison Theorems for Preconditioned AOR Iterative Method
下载PDF
导出
摘要 给出了一种预条件AOR方法,并且在理论上证明了此方法的渐近收敛速度要快于基本的AOR迭代法,也给出了在条件0<γ≤ω≤1下,预条件AOR方法中参数ω的最优值.最后用数值例子验证了所得的主要结论. The preconditioned AOR method is introduced, it is theoretically proved that the convergence rate of preconditioned AOR method is faster than that of basic AOR itemtive method, and the optimal parameter of under the condition of is given. Finally, the main results obtained are demonstrated by a numerical example.
出处 《重庆工学院学报(自然科学版)》 2008年第3期128-132,共5页 Journal of Chongqing Institute of Technology
基金 国家自然科学基金资助项目(60774073)
关键词 AOR迭代法 预条件AOR方法 预条件算子 M-矩阵 AOR iterative merhod preconditioned AOR method precondition operator M-matrix
  • 相关文献

参考文献6

  • 1[1]Kohno T.Improving the modified iterative methods for Z--matrice[J].Linear Algebra Appl,1997(267):113-123.
  • 2[2]Berman A,Plemmons R J.Nonnegative Matrices in the mathematical science[M].SIAM Philadeplphia:PA,1994.
  • 3[3]宋永忠.线性方程组的迭代解法[M].南京:南京师范大学出版社,1992.
  • 4[5]Li-Ying Sun.Comparison theorem for the SOR iterative method[J].Journal of computational and applied mathematics,2005,181 336-341.
  • 5[6]Yu L,Kolotilina.Two-sided bounds for the inverse of an H-matt ice[J].Lin Alg Appl,1995,225:117-123.
  • 6[7]Wen Li,Sun W W.Modified Gauss-Seidel methods and Jacobi type methods for Z-matrices[J].Linear Algebra Appl,2000,317:223-240.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部