期刊文献+

一种改进的神经元网络及学习算法 被引量:1

A MODIFIED NEURAL NETWORK AND LEARNING ALGORITHM
下载PDF
导出
摘要 本文提出一种改进的神经网络结构,它由线性网络和多层前向网络两部分组成。线性网络部分的参数采用递推最小二乘法辨识,多层前向网络的权值和阈值采用BP算法学习。由于线性网络的引入及递推最小二乘法的使用,大大提高了网络的学习速度。此外,该网络结构也为基于神经网络模型控制器的设计的简化提供了条件。 A modified neural network structure which is composed of a linear network and a multilayered feedforward neural network(MFNN) is presented.The parameters of linear network are identified by recursive least square and weights and thresholds of MFNN are learned by BP algorithm.The modified neural network′s learning speed is much increased because of the linear network and the recursive least square.In addition it is convenient to use the modified neural network for simplifying controller′s design.
作者 周蓉 王福利
出处 《矿冶》 CAS 1997年第2期85-88,共4页 Mining And Metallurgy
关键词 神经网络 BP算法 最小二乘法 学习算法 Neural network BP algorithm Least square algorithm
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部