期刊文献+

一类包含Euler-Bernoulli-Genocchi数的恒等式 被引量:2

Some Identities Involving Euler-Bernoulli-Gencchi Numbers
下载PDF
导出
摘要 利用初等方法给出了一类包含Euler-Bernoulli-Genocchi数乘积及其线性组合的卷积公式。 Primary method is the use of a class containing the Euler-Bemoulli-Genocchi several product portfolio and its linear convolution formula.
出处 《石河子大学学报(自然科学版)》 CAS 2008年第1期110-112,共3页 Journal of Shihezi University(Natural Science)
基金 国家自然科学基金资助项目(10671155)
关键词 EULER数 Bemoutli数 GENOCCHI数 高阶EULER多项式 高阶Bemoutlic多项式 求和公式 Euler numbers Bemoulli numbers Genocchi numbers higher order Euler polynomials higher order Bernoulli polynomials summation formula
  • 相关文献

参考文献3

二级参考文献16

  • 1Abramowitz M.Stegun I A (Eds).Handbook of Mathematical Functions with Formulas,Graphs,and Mathematical Tables [M]. National Bureau of Standards, applied Mathematics Series 55, 4th printing,Washington, 1965.
  • 2Nǒrlund N E. Differentzenrechnung[M]. Berling Springer-Verlag. 1924.
  • 3Zhang Wen Peng. Some idendities involing the Euler and the central factorial numbers [J]. The Fibonacci Quarterly, 1998, 36(2): 154--157.
  • 4Vassilev M V. Relations between Bernoulli numbers and Euler numbers[J]. Bull Number Related Topics. 1987.11(1--3): 93--95.
  • 5Dilcher,Karl. Sums of products of Bernoulli numbers [J]. J. Number Theory, 1996, 60(1):23-41.MR 97h:11014.
  • 6ZHANG Wen-peng. Some identities involving the Euler and the Central factorial numbers [J]. The Fibonacci Quarterly, 1998, 36(2):154-157.
  • 7NRLUND N E. Vorlesungen Uber Differenzenrechnung [M]. Berlin, 1924.
  • 8APOSTOL T M. Introduction to Analytic Number Theory [M]. Springer-Verlag, New york, 1976.
  • 9VASSILEV M V. Relations between Bernouli numbers and Euler numbers [J]. Bull.Number Theory Related Topics, 1987,11(1): 93-95,MR 90g:11027.
  • 10王天明,张祥德.关于Genocchi数和Riemann Zeta-函数的一些恒等式[J].Journal of Mathematical Research and Exposition,1997,17(4):597-600. 被引量:15

共引文献39

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部