期刊文献+

用L-预远域系算子、L-预外部算子或L-预边界算子确定L-预拓扑 被引量:5

Determining an L-pretopology by an L-pre-R-neighborhood System Operator,by an L-preexterior Operator,or by an L-preboundary Operator
下载PDF
导出
摘要 给定集合X,设T(X)是X上的L-预拓扑的全体。本文证明了可以在R(X)(X上的L-预远域系算子的全体)、E(X)(X上的L-预外部算子的全体)和B(X)(X上的L-预边界算子的全体)上定义适当的序关系,使它们在一定条件下成为与(T(X),)同构的完备格。因此一个给定集合X上的L-预拓扑可以由X上的L-预远域系算子、L-预外部算子或L-预边界算子确定。 For an abitrary set X, appropriate order relations on R (X) (the set of all L-pre-R-neighborhood system operators), E(X) (the set of all L-preexterior operators), and B(X) (the set of all L-preboundary operators) can be defined respectively to make R (X), E (X), and B (X) be complete lattices that are ismorphic to (T(X), belong to) (where T(X) is the set of all L-pretopologies on X). Thus an L-pretopology on a given set X can be determined by an L-pre - R - neighborhood system operator, by an L-preexterior operator, or by an L-preboundary operator.
出处 《模糊系统与数学》 CSCD 北大核心 2008年第2期87-91,共5页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(10271069) 陕西师范大学研究生培养创新基金资助项目
关键词 L-预拓扑空间 L-预远域系算子 L-预闭包算子 L-预外部算子 L-预边界算子 L-pretopological Space L-pre-R-neighborhood System Operator L-preclosure Operator L- preexterior Operator L-preboundary Operator
  • 相关文献

参考文献5

  • 1苏华飞,李生刚.L-预拓扑的确定[J].内蒙古大学学报(自然科学版),2006,37(4):378-381. 被引量:18
  • 2陶冬亚.从边界运算出发建立拓扑空间[J].大学数学,2003,19(2):71-72. 被引量:6
  • 3Badard R. Expressions on a fuzzy pretopologieal substratum[J]. Information Sciences,1999,116:205-218.
  • 4Liu Y M,Luo M K. Fuzzy topology[M]. Singapore:World Scientific Publishing,1998.
  • 5熊金城.点集拓扑讲义(第三版)[M].北京:高等教育出版社,2004.

二级参考文献4

共引文献22

同被引文献25

  • 1苏华飞,李生刚.L-预拓扑的确定[J].内蒙古大学学报(自然科学版),2006,37(4):378-381. 被引量:18
  • 2DAVEY B A, PRIESILEY H A. Introduction to lattices and order(Second edition)[ M]. Cambridge University Press, 2002.
  • 3CASPARD Nathalie, MONJARDET Bernard. The lattices of closure systems, closure operators, and implicational systems on a finite set: a survey[J]. Discrete Applied Mathematics, 2003, 127:241-269.
  • 4ADAMEK J,HERRLICH H,STRECKER E G.Abstract and concrete categories[M].New York:John Wiley & Sons,1990.
  • 5FANG Jinming,YUE Yueli.L-fuzzy closure systems[J].Fuzzy Sets and Systems,2010,161:1 242-1 252.
  • 6熊金城.点集拓扑讲义[M].3版.北京:高等教育出版社,2005.
  • 7WANG Guojun.Theory of topological molecular lattices[J].Fuzzy Set and Systems,1992,47(3):351-376.
  • 8DAVEY B A, PRIESTLEY H A. Introduction to lattices and order[ M ]. 2 ed. Cambridge:Cambridge University Press,2002.
  • 9NATHALIE Caspard,BERNARD Monjardet. The lattices of closure systems, closure operators, and implieatlonal systems on a finite set: a survey [ J]. Discrete Applied Mathematics ,2003,127:241-269.
  • 10Chang C L. Fuzzy topological spaces[J]. JMAA, 1986,24(2):37-42.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部