摘要
给定集合X,设T(X)是X上的L-预拓扑的全体。本文证明了可以在R(X)(X上的L-预远域系算子的全体)、E(X)(X上的L-预外部算子的全体)和B(X)(X上的L-预边界算子的全体)上定义适当的序关系,使它们在一定条件下成为与(T(X),)同构的完备格。因此一个给定集合X上的L-预拓扑可以由X上的L-预远域系算子、L-预外部算子或L-预边界算子确定。
For an abitrary set X, appropriate order relations on R (X) (the set of all L-pre-R-neighborhood system operators), E(X) (the set of all L-preexterior operators), and B(X) (the set of all L-preboundary operators) can be defined respectively to make R (X), E (X), and B (X) be complete lattices that are ismorphic to (T(X), belong to) (where T(X) is the set of all L-pretopologies on X). Thus an L-pretopology on a given set X can be determined by an L-pre - R - neighborhood system operator, by an L-preexterior operator, or by an L-preboundary operator.
出处
《模糊系统与数学》
CSCD
北大核心
2008年第2期87-91,共5页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(10271069)
陕西师范大学研究生培养创新基金资助项目