期刊文献+

一个基于椭圆曲线带消息恢复功能的数字签名方案 被引量:2

A Digital Signature Scheme with Information Recovery Function Based on the Elliptic Curve Belt
下载PDF
导出
摘要 数字签名技术不仅能够提供加密和解密,而且能够确认参与者的身份,防止恶意的伪造、篡改,在网络通信安全方面起到重要的保护作用。椭圆曲线密码系统与其他公钥密码系统相比,除具有安全性高外,还有计算负载小,密钥尺寸短,占用带宽少等优点。新的基于椭圆曲线的具有消息恢复功能的数字签名方案,给出了验证协议和否认协议,并对方案的安全性进行了讨论,解决了普通ECC数字签名方案不能实现消息恢复的问题。 Digital signature technology can not only provide encrypt and decrypt but determine the identity of participants, prevent malicious forgery and distortion and play am important role in the safety of network service. Compared with other public-key cryptosystem, the elliptic curve cryptosystem has the advantages of higher safety, less computing load, shorter encryption key and occupying less bandwidth. The new signature scheme with message recovery based on the elliptic curve gives the way to test and defy agreements, discusses the safety of the scheme and solves the problem of the message recovery which can not be realized by the general ECC signature scheme.
作者 顾大刚
出处 《贵阳学院学报(自然科学版)》 2008年第1期16-18,共3页 Journal of Guiyang University:Natural Sciences
关键词 数字签名 椭圆曲线 消息恢复 digital signature the elliptic curve message recovery
  • 相关文献

参考文献4

二级参考文献18

  • 1(美)BruceSchneier 吴世中等译.应用密码学协议、算法与C程序[M].北京:机械工业出版社,2000..
  • 2IEEE Std P1363-2000. IEEE Stdandard Specifications for Public-Key Cryptography [S]. IEEE Computer Society,August 20, 2000.
  • 3Blake I, Seroussi G, Smart N. Elliptic Curves in Cryptography [M]. Cambridge, United Kingdom :Cambridge University Press, 1999.
  • 4Hankerson D, Lopez J, Menezes A. Software implementation of elliptic curve cryptography over binery fields [A].Cryptographic Hardware and Embedded Systems-CHES'2000[C]. Berlin, Germany: SpringerVerlag, 2000. 1 - 24.
  • 5Okada S, Torii N, Itoh K, et al. Implementation of elliptic curve cryptographic coprocessor over GF(2^m) on an FPGA[A]. Cryptographic Hardware and Embedded Systems--CHES'2000[C]. Berlin, Germany:Springer-Verlag, 2000. 25 - 40.
  • 6Lopez J, Dahab R. Fast multiplication on elliptic curves over GF(2^n) without precomputation [A]. Cryptographic Hardware and Embedded Systems-CHES'99 [C].Berlin,Germany: Springer-Verlag, 1999. 316 - 327.
  • 7Montgomery P. Speeding the Pollard and elliptic curve method of facteorization [J]. Mathematics of Computation,1985, 48: 209-224.
  • 8William J C, Edward P D, Scott A R, et al. PKI Elliptic Curve Cryptography, and Digital Signatures [J]. Computers and Security, 1999,18: 47-66.
  • 9Microprocessor,Microcomputer Standards Committee of the IEEE Computer Society.IEEE Standard Specifications for Public-Key Cryptography[DB/OL].http://intl.ieeexplore.ieee.org.2000-01-30.
  • 10Lu Kai-ceng. Computer Cryptography-Data Secrecy and Security in Computer Network(Second Edition)[M]. Beijing:Tsinghua University Press, 1998(Ch).

共引文献27

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部