期刊文献+

一种基于SVM的网络异常流量检测新方法 被引量:1

A New Method of Abnormal Network Traffic Detection Based on SVM
下载PDF
导出
摘要 提出了一种基于SVM的网络异常流量检测新方法。分析了支持向量机的基本原理,结合网络流量异常检测的特点,讨论了异常检测的特征选择问题;提出了网络流量相关性、包长度统计变量以及异常报文统计等具有代表性的特征参数,描述了数据的预处理方法。试验结果表明,所选特征参数可有效地检测网络流量异常变化,说明基于支持向量机的在网络异常流量检测具有较好的可应用性。 An abnormal network traffic flow detection mechanism is presented based on support vector machine(SVM). Theory of SVM is introduced first, and then the selection feature is discussed in depth Many features, including relativity of network traffic, length of packet and so on, are introduced in abnormal network traffic flow detection, and preprocessing of data is explained in detail. Experimental results show that the selected features can be used to detect the traffic anomaly incurred by network attacks and the detection mechanism based on SVM has the quality of generalization.
作者 柴志成
出处 《贵阳学院学报(自然科学版)》 2008年第1期23-26,共4页 Journal of Guiyang University:Natural Sciences
关键词 网络流量 支持向量机 网络安全 traffic flow support vector machine network security
  • 相关文献

参考文献6

  • 1[1]Jun Jiang,Symeon Papavassiliou.A Network Fault Diagnostic ApproachBased on a Statistical Traffic Normality Prediction Algorithm[C].Proceedings of IEEE GLOBECOM,2003.2918-2922.
  • 2[2]Thottan Marina,Chuanyi Ji.Adaptive Thresholding for Proactive Net-work Problem Detection[C].Rhode Island:IEEE InternationalWorkshop on Systems Management,Newport,1998.108-116.
  • 3[3]Arnon Goldman.Anomaly Detection Based on an Iterative Local Statis-ticals Approach[J].IEEE Signal Processing,2004,84(7):440-443.
  • 4[4]Matthew V Mahoney.Network Traffic Anomaly Detection Based onPacket Bytes[C].Melbourne,Florida,USA:ACM,SAC 2003,2003.
  • 5[5]Vapnik V N.An Overview of Statistical Learning Theory[J].IEEE Trans.on NN,1999.
  • 6温志贤,李小勇.基于支持向量机的网络流量异常检测[J].西北师范大学学报(自然科学版),2005,41(3):27-31. 被引量:6

二级参考文献8

  • 1HANJia-wei KamberMicheline 范明.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 2JrisitianiniN Shawe-TaylorJ 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004.53-79.
  • 3Jon Postel.RFC 793[A].DARPA.Transmission Control Protocol-DARPA Internet Program Protocol Specification[C].Cacifornia:Information Sciences Institute,1981.7-52.
  • 4Licoln Laboratory,Massachusetts Institute of Technology. DARPA intrusion detection evaluation[EB/OL].http://www.ll.mit.edu/IST/ideval/index.html,2003-09-16.
  • 5TanenbaumAS 潘爱民译.计算机网络[M]第4版[M].北京: 清华大学出版社,2004.437-472.
  • 6Chang Chih-Chung,Lin Chih-Jen.LIBSVM:a library for support vector machines[EB/OL].http://www.csie.ntu.edu.tw/~cjlin/libsvm/,2004-02-25.
  • 7陈硕,安常青,李学农.分布式入侵检测系统及其认知能力[J].软件学报,2001,12(2):225-232. 被引量:44
  • 8邹柏贤,李忠诚.基于AR模型的网络异常检测[J].微电子学与计算机,2002,19(12):1-6. 被引量:4

共引文献5

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部