期刊文献+

一类具有饱和感染率的病毒动力学模型的全局稳定性(英文) 被引量:1

Global Stability for HIV Infection of CD4^+T Cells with Saturation Response
下载PDF
导出
摘要 研究了一类H IV感染的病毒动力学模型,得到了病毒消除与否的阀值——基本再生数R0,证明了病毒消除平衡点和疾病平衡点的存在性及全局渐近稳定性. A mathematical model of virus infected by HIV of CD4^+ T cells is studied. The threshold-basic reproductive number which determines whether a virus is cleared or not is obtained. The existence and global stabilities of virus-clear equilibrium and chronic-infection equilibrium are proved.
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2008年第2期175-179,共5页 Journal of Xinyang Normal University(Natural Science Edition)
基金 The NNSF of China(10771079) Henan Innovation Project for University Prominent Research Talents(2005KYCX017)
关键词 HIV感染 CD4+T细胞 动力系统 全局稳定性 HIV infection CD4^+ T cells dynamical system global stability
  • 相关文献

参考文献8

  • 1王豪,荆巧锋.一类具有线性感染率的病毒模型的动力学性质(英文)[J].信阳师范学院学报(自然科学版),2006,19(3):252-254. 被引量:1
  • 2宋新宇,查新月.具有饱和丢失感染细胞的病毒模型的全局动力学性质(英文)[J].信阳师范学院学报(自然科学版),2005,18(3):262-267. 被引量:2
  • 3Leenheer P De, Smith H L. Virus Dynamics: a Global Analysis [ J ]. SIAM J Appl Math ( S0036 - 1399 ), 2003,63 : 1313 - 1327.
  • 4Perelson A,Nelson P. Mathematical Analysis of HIV-1 Dynamics in Vivo[ J]. SIAM Review (S0036-1445) ,1999,41(1) :3-44.
  • 5Wang L,Li M Y,Kirschner D. Mathematical Analysis of the Global Dynamics of a Model for HTLV-1 Infection and ATL Progression[J]. Math Biosc (S0025-5564) ,2002,179:207-217.
  • 6Butler G J,Wahman P. Persistence in Dynamical Systems[J]. Proe Am Math Soc(S1088-9485) ,1986,96:425-430.
  • 7Wahman P. A Brief Survey of Persistence[ C ]//Busenberg S. Martelli G. Delay Differential Equations and Dynamical Systems. Springer, Berlin, 1991.
  • 8Li M Y, Muldowney J S. A Geometric Approach to the Global-stability Problems[ J]. SIAM J Math Anal (S0036-1410) 1996,27 : 1017-1083.

二级参考文献24

  • 1PERELSON A S,NELSON P W.Mathematical Analysis of HIV-1 Dynamics in Vivo[J].SIAM Review(S0036-1445),1999,41(1):3-44.
  • 2NEUMANN A U,LAM N P,et al.Hepatitis C Viral Dynamics in Vivo and Antiviral Efficacy of the Interferon-α Therapy[J].Science(S0036-8075),1998,282:103-107.
  • 3PERELSON A S,NEUMANN A U,et al.HIV-1 Dynamics in Vivo:Virion Clearencerate,Infected Cell Life-span,and Viral Generation Time[J].Science(S0036-8075),1996,271:1582-1586.
  • 4WODARZ D,NOWAK M A.HIV Therapy:Managing Resistence[J].Proc Natl Acad Sci USA(S0027-8424),2000,97:8193-8195.
  • 5HO D D,NEUMANN A U,et al.Rapid Turnover of the Plasma Virions and CD4 Lymphocytes in HIV-infection[J].Nature(S0028-0836),1995,373:123-126.
  • 6NOWAK M A,LLOYD A L,et al.Viral Dynamics of Primary Viremia and Antitroviral Therapy in Simian Immunodeficiency Virus Infection[J].Journal of Virology(S0022-538X),1997,71:7518-7525.
  • 7MITTLER J E,SULZER B,et al.Influence of Delayed Virus Production on Viral Dynamics in HIV-1 Infected Patients[J].Mathematical Biosciences(S0025-5564),1998,152:143.
  • 8BUTLER G,FREEDMAN H I,et al.Uniform Persistence System[J].Pro Amer Math Soc(S1563-504X),1986,96:425-430.
  • 9NEUMANN A,LAM N,DAHARI H,et al.Hepatitis C viral dynamics in vivo and antiviral efficacy of the interferon-α therapy[J].Science,1998,282:103-107.
  • 10WEI X,GHOSH S,TAYLOR M,et al.Viral dynamics in human immunodeficiency virus type 1 infection[J].Nature,1995,373:117.

共引文献1

同被引文献7

  • 1Clark R. An introduction to dynamical systems; continuous and discrete [M], Beljing : China Machine Press, 2005 : 131-132.
  • 2Murase A,Sasaki T, Kajiwara T. Stability analysis of pathogen II immune interaction dynamics [J]. J Math Biol, 2005,51 : 247-267.
  • 3Kajiwara T,Sasaki T. A note on the stability analysis of pathogen immune interaction dynamics [J ]. Discrete and Continuous Dynamical Systems II Series B, 2004 (4) : 615-622.
  • 4韩茂安,邢业鹏,毕平.动力系统导论[M].北京:机械工业出版社,2006:110-112.
  • 5姜启源,谢金星.数学建模案例精选[M].北京:高等教育出版社,2003:107-123.
  • 6赵国忠.流感病毒传播的数学模型及数值模拟[J].阴山学刊(自然科学版),2006,20(2):8-9. 被引量:3
  • 7金瑜,张勇,王稳地.一类具有阶段结构的传染病模型[J].西南师范大学学报(自然科学版),2003,28(6):863-868. 被引量:19

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部