期刊文献+

一些重酮体系与水的亲核加成反应的计算研究

Computational Study of the Nucleophilic Addition Reactions between some Heavy Ketones and Water
下载PDF
导出
摘要 采用密度泛函理论(DFT)方法在B3LYP/6-311++G(d,p)水平上对4类重酮体系的模型化合物(H2X=Y,X为Si或Ge,Y为S或Se)与水的亲核加成反应的反应机理和势能剖面进行了理论计算研究,利用Bader的AIM(Atomin Molecules)理论对反应过程进行了电子密度拓扑分析研究.结果表明,所研究的4个反应的反应机理完全相同,即:两反应物分子首先经过一无能垒过程形成中间体络合物,该中间体络合物再经过4元环过渡态形成产物.4个反应的活化能垒分别为17.87、18.32、35.32及40.25 kJ/mol.所研究的4个双键体系的反应活性顺序为:Si S>Si Se>Ge S>Ge Se. DFT calculations at the B3LYP/6-311 ++G( d, p) level were employed to study the mechanism and the potential energy surface of the nucleophihc addition reactions between model compounds of four heavy ketones and water. The electron density topological analysis was carried out for the reaction process according to Bader' s AIM theory. The results show that all of four reactions proceed in the same way: 1 ) two reactant molecules form an intermediate complex with no energy barrier; 2) the intermediate complex isomerizes to give the product via a four-member ring transition state, the energy barriers are 17.87, 18.32, 35.32 and 40.25 kJ/mol, respectively. The reactivity order of four double bonds is : Si=S〉Si=Se〉Ge=S〉Ge=Se..
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2008年第2期197-199,共3页 Journal of Xinyang Normal University(Natural Science Edition)
基金 信阳师范学院博士科研基金项目
关键词 重酮 亲核加成反应 密度泛函理论 反应机理 heavy ketone water nueleophilie addition reaction density functional theory reaction mechanism
  • 相关文献

参考文献11

  • 1Okazaki R, Tokitoh N. Heavy Ketones, the Heavier Element Congeners of a Ketone[ J]. Ace Chem Res(S0001-4842), 2000, 33: 625-630.
  • 2Power P P. π-Bonding and the Lone Pair Effect in Multiple Bonds between Heavier Main Group Elements[ J]. Chem Rev( S0009-2665 ), 1999, 99 : 3463-3503.
  • 3Suzuki H, Tokitoh N, Okazaki R, et al. Synthesis, Structure and Reactivity of the First Kinetically Stabilized Silanethione[ J]. J Am Chem Soc (S0002-7863), 1998, 120: 11096-11105.
  • 4Iwamoto T, Satok, Ishida S, et al. Synthesis, Properties, and Reactions of a Series of Stable Dialkyl-Substituted Silicon-Chalcogen Doubly Bonded Compounds[J]. J Am Chem Soc(S0002-7863), 2006, 128: 16914-16920.
  • 5Saito M, Tokitoh N, Okazaki R. Tin-Chalcogen Double-Bond Compounds, Stannanethione and Stannaneselone: Synthesis, Structure, and Reactivities[ J]. J Am Chem Soc(S0002-7863 ), 2004, 126 : 15572-15582.
  • 6Tokitoh N, Matsumoto T, Manmaru K, et al. Synthesis and Crystal Structure of the First Stable Diarylgermanethione[ J]. J Am Chem Soc (S 0002-7863), 1993, 115 : 8855-8856.
  • 7Matsumoto T, Tokitoh N, Okazaki R. Synthesis and Structure of the First Stable Germaneselone[ J]. Angew Chem Int Ed Engl( S1433-7851 ), 1994, 33 : 2316-2317.
  • 8Matsumoto T, Tokitoh N, Okazaki R. The First Kinetically Stabilized Germanethiones and Germaneselones: Syntheses, Structures and Reactivities [J]. J Am Chem Soc(S0002-7863), 1999, 121 : 8811-8824.
  • 9Bader R F W. A Quantum Theory of Molecular Structure and Its Applications[J]. Chem Rev(S0009-2665), 1991, 91 : 893-928.
  • 10Bader R F W. Atoms in Molecules[J]. Acc Chem Res(S0001-4842), 1985, 18: 9-15.

二级参考文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部