期刊文献+

基于模拟退火PSO的电力系统无功优化 被引量:6

Reactive power optimization in power system based on PSO with simulated annealing
下载PDF
导出
摘要 对粒子群优化算法方法进行改进,把模拟退火机制引入到粒子群优化算法方法中,提出了基于模拟退火粒子群优化PSOSA(PSO with Simulated Annealing)算法,通过适当选择种群大小、调整惯性权重系数ω和退火系数C,以温度的缓慢下降来控制粒子的寻优过程,提高了粒子群优化算法的全局收敛性,改善了粒子的局部搜索能力.建立了以网损最小为目标的电力系统无功优化模型.通过对IEEE-30系统的无功优化计算,结果表明,PSOSA算法具有更好的全局收敛性和良好的搜索能力. Particle swarm optimization (PSO) method is improved by introducing the mechanism of simulated annealing to original PSO, so as to propose a PSOSA (PSO with simulated annealing) method. It controls the optimal process of swarm by means of decreasing temperature slowly. Inertia coefficient and anneal coefficient are adjusted properly; so both the convergence and the local search ability are enhanced. The method is applied to the reactive power optimization and calculated for the IEEE 30-bus power system; the result shows that the approach can get better performance and solutions.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2008年第2期94-98,共5页 Engineering Journal of Wuhan University
关键词 电力系统 模拟退火 粒子群优化 无功优化 power system simulated annealing particle swarm optimization (PSO) reactive power optimization
  • 相关文献

参考文献16

二级参考文献129

  • 1韩学山,柳焯.考虑发电机组输出功率速度限制的最优机组组合[J].电网技术,1994,18(6):11-16. 被引量:88
  • 2韦柳涛,曾庆川,姜铁兵,虞锦江,黄定疆.启发式遗传基因算法及其在电力系统机组组合优化中的应用[J].中国电机工程学报,1994,14(2):67-72. 被引量:27
  • 3邓佑满,张伯明,相年德.配电网络电容器实时优化投切的逐次线性整数规划法[J].中国电机工程学报,1995,15(6):375-383. 被引量:45
  • 4[1]Huang Y C, Yang H T, Huang C L. Solving the capacitor placement problem in a radial distribution system using tabu search approach [J]. IEEE Trans on Power Systems, 1996, 11(4):1868-1873.
  • 5[2]Kalyuzhny A, Levitin G, Elmakis D, et al. System approach to shunt capacitor allocation in radial distribution systems [J]. Electric Power Systems Research, 2000, 56(1):51-60.
  • 6[3]Sundhararajan S, Pahwa A. Optimal selection of capacitors for radial distribution systems using a genetic algorithm [J]. IEEE Trans on Power Systems, 1994, 9(3): 1499-1506.
  • 7[4]Kennedy J, Eberhart R. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, 1995.
  • 8[5]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]. Proceedings of Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.
  • 9[6]Yoshida H, Kawata K, Fukuyama Y. A particle swarm optimization for reactive power and voltage control considering voltage security assessment [J]. IEEE Trans on Power Systems, 2000, 15(4):1232-1239.
  • 10[7]Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C]. Proc. 1999 ICEC, Washington DC, 1999.

共引文献623

同被引文献102

引证文献6

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部