期刊文献+

带参数的Hardy-Hilbert型不等式的精化

Refinement of Hardy-Hilbert Type Inequalities with Parameters
下载PDF
导出
摘要 利用加强的Hlder不等式对Hardy-Hilbert型不等式做了改进,建立了一些新的形如∑∞n=0∑∞m=0ambn(2m+1)λ+(2n+1)λ<2λsin(ππ/p){∑m∞=0(2m+1)p-1-λapm}1p{∑n∞=0(2n+1)q-1-λbnq}1q(1-R)k的不等式. An improvement of Haidy-Hilbert' s inequality can be obtained by means of a sharpening of Hoelder' s inequality, a newinequality of the form ∞∑n=0∞∑m=0ambn/(2m+1)^λ〈π/2λsin(π/p){∞∑m=0(2m+1)^p-1-λam^p}1/p∞∑n=0(2n+1)^q-1-λbn^q}1/q(1-R)^kis built.
出处 《吉首大学学报(自然科学版)》 CAS 2008年第1期26-28,74,共4页 Journal of Jishou University(Natural Sciences Edition)
基金 湖南省教育厅科学研究项目(07C520)
关键词 HARDY-HILBERT不等式 HOELDER不等式 Β函数 Hardy-Hilbert inequality Hoelder inequality β function
  • 相关文献

参考文献4

  • 1MTTRINOVIC D S, PECARIC J E,FINK A M. Inequalities Involving Functions and Their Integrals and Derivatives [M] .Boston:Kluwet Academic Pubhshers, 1991.
  • 2杨必成.一个对偶的Hardy-Hilbert不等式及其推广(英文)[J].数学进展,2006,35(1):102-108. 被引量:5
  • 3HE Le-ping,GAO Ming-zhe,WEI Shan-grong.A Note on Hilbert's Inequality [J] .Mathematical Inequalities & Applications,2003,6 (2) :283 - 288.
  • 4HE Le-ping,JIA Wei-jian,GAO Ming-zhe. A Hardy-Hilbert's Type Inequality with Gamma Function and Its Applications [J] .Integral Transforms and Special Functions, 2006,17 (5) : 355 - 363.

二级参考文献8

  • 1Hardy,G.H.,Littlewood,J.E.,Polya,G.,Inequalities,Cambridge:Cambridge Univ.Press,
  • 2Yang Bicheng,On a generalization of Hilbert's double series theorem,Mathematical Inequalities and Applications,2002,5(2):197-204.
  • 3Gao Mingzhe,Wei Shongrong,He Leping,On the Hilbert inequality with weights,Journal for Analysis and its Applications,2002,21(1):257-263.
  • 4Mitrinovic,D.S.,Pecaric,J.E.,Fink,A.M.,Inequalities Involving Functions and Their Integrals and Derivatives,Boston:Kluwer Academic Publishers,1991.
  • 5Yang Bicheng,On a strengthened version of the more accurate Hardy-Hilbert's inequality,Acta Mathematica Sinica,1999,42(6):1103-1110.
  • 6Yang Bicheng,On a strengthened Hardy-Hilbert's inequality,J.Ineq.Pure.Appl.Math.,2000,1(2):Article 22.
  • 7Yang Bicheng,Debnath,L.,On a new generalization of Hardy-Hilbert's inequality and its applications,J.Math.Anal.Appl.,1999,233:484-497.
  • 8Kuang Jichang,Debnath,L.,On new generalizations of Hilbert's inequality and their applications,J.Math.Anal.Appl.,2000,245:248-265.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部