期刊文献+

高阶的分数阶的粘弹性材料本构模型的复模量与复柔量

The complex modulus and the complex compliance for higher-order fractional constitutive models of visco-elastic materials
下载PDF
导出
摘要 应用分数阶微积分理论,基于高阶的分数阶的粘弹性材料本构模型,讨论了FVMP模型的复模量与FVMS模型的复柔量,并给出相应的理论曲线。本文结果将对粘弹性材料的力学实验具有重要的理论指导意义。 By the theory of fractional calculus (FC) based higher-order fractional constitutive models of visco-elastic materials, the complex modulus of FVMP model and complex compliance of FVMS model were discussed. The theory curves were also given. The results are significant in guilding dynamical tests on viscoelastic materials.
作者 刘甲国
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第4期85-88,共4页 Journal of Shandong University(Natural Science)
基金 山东省自然科学基金资助项目(Y2007A06)
关键词 分数阶微积分 粘弹性 高阶的分数阶本构方程 复模量 复柔量 fractional calculus viscoelasticity higher-order fractional constitutive equation complex modulus complex cornphance
  • 相关文献

参考文献2

二级参考文献23

  • 1周光泉 刘孝敏.黏弹性理论[M].合肥:中国科学技术大学出版社,1996.55-57.
  • 2Glockle W G, Nonnenmacher T F. Fractional integral operators and Fox functions in the theory of viscoelasticity[J]. Macromolecules,1991, 24(24): 6 426 - 6 434.
  • 3A D Drozdov. Mechanics of viscoelastic solids[M]. New York: John Wiley & Sous Ltd, 1998. 21 - 65.
  • 4R S Lakes. Viscoelastic solids[M]. London: CRC Press, 1998. 63 - 110.
  • 5Bruce J W, Mauro B, Paolo G. Physics of fractal operators[ M]. New York: Springer-Verlag, 2003.3 - 40.
  • 6Nonnenmacher T F, Metzler R. On the Riemann-Liouville fractional calculus and some recent applications[J]. Fractals, 1995, 3(3):557 - 566.
  • 7Schiessel H, Metzler R, Blumen A, et al. Generalized viscoelastic models: their fractional equations with solutions[J]. J Phys A: Math Gen, 1995, 28: 6567-6584.
  • 8Schiessel H. Constitutive behavior modeling and fractional derivatives[A]. Advances in the flow and rheology of non-Newtonian fluids[C]. Eds Siginer, et al. Amsterdam: Elsevier, 1999. 298-299.
  • 9Schiessel H, Friedrich C, Blumen A. Applications to the problems in polymer physics and rheology[A]. Applications of fractional calculus in physics[C]. Singapore: World Scientific, 2000. 331- 376.
  • 10Schiessel H, Blumen A. Mesoscopic pictures of the Sol-Gel transition: Ladder models and fractal networks[J]. Macromolecules, 1995,28:4 013 - 4 019.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部