期刊文献+

应用非线性系统识别的RBF神经网络新型学习算法

A new learning algorithm for RBF neural networks with applications in nonlinear system identification
下载PDF
导出
摘要 扩展了一个在线的优先权更新算法,即一个基于RBF神经网络的非线性不连续时间多元动态系统的识别技术,这种技术适合神经网络结构.描述了独立表示的在线算法的2个不同问题,通过建立识别问题和在适当的控制理论中揭示某些技术之间的连接,给出了一个能满足单一变量系统需要的算法. It was introduced an on-line priority updating algorithm, nonlinear continuous-time dynamic systems of multi-recognition technology based on RBF neural network. The technique was showed suitable for neural network structure. The priority clarified the independent online algorithm with two different issues. Through the establishment of identification problems and by appropriate, control theory of a link between certain technology, it was created a system to meet the needs of a single variable algorithm.
作者 宁小红
出处 《浙江师范大学学报(自然科学版)》 CAS 2008年第2期183-186,共4页 Journal of Zhejiang Normal University:Natural Sciences
关键词 非线性系统 非线性系统识别 神经网络 RBF神经网络 学习算法 nonlinear system nonlinear system identification neural networks RBF neural networks learning algorithm
  • 相关文献

参考文献4

  • 1Lin Yuanhao, Narendra K S. A new error model for adaptive systems[ J]. IEEE Trans Autom Control, 1998,25 (3) :585-587.
  • 2Narendra K S, Annaswamy A M. Stable adaptive control [ M ]. Upper Saddle River: Prentice-Hall Inc, 1989 : 146-147.
  • 3Park J,Sandberg I W. Universal approximation using radial-basis-function networks[ J ]. Neural Computation, 1990,3 (2) :246-257.
  • 4Meng J E,Wu Shiqian,Lu Juwei. Face recognition with radial basis function (RBF) neural networks[ J ]. IEEE Trans Neural Networks,2002, 13(3) :697-710.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部