期刊文献+

数据挖掘及其在企业管理中的应用 被引量:9

The Application of Data Mining in Enterprise Management
下载PDF
导出
摘要 企业在管理过程中产生了大量的数据,这些数据的背后隐藏着与企业密切相关的极其重要的知识。聚类、关联规则、序列模式、统计分析、特征规则等数据挖掘方法能从这些海量数据中发现有用的知识,使数据真正成为企业的财富,为企业的决策和发展服务。目前数据挖掘已被广泛应用于银行、电信等行业,用来对客户数据进行正确的分析,挖掘消费模式,预测客户未来的行为,针对客户的需求提供个性化的服务。 The enormous data, generated during management process of enterprise, together with very critical knowledge hidden therein, are closely connected to the enterprise. Data mining methods such as clustering, association rules, sequential pattern, statistics analysis, characteristics rules, etc. can be used to find out useful knowledge, enabling such data to become the real fortune of enterprise and serve enterprise decision making and development. Currently, Data mining has been widely used in industries such as banking and telecommunication, for analyzing customer data accurately, mining consumption mode, predicting future behavior of customer and providing individuation service according to customer requirements.
作者 孙华梅
出处 《商业研究》 CSSCI 北大核心 2008年第5期69-71,共3页 Commercial Research
基金 国家自然科学基金资助 项目编号:70601008
关键词 数据挖掘 聚类 关联规则 data mining clustering association rules
  • 相关文献

参考文献10

  • 1U. Fayyad, G. Piatetsky- Shapiro, P. Smyth. The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communications of the ACM. 1996,39(11):27-34
  • 2S. Chakrabarti. Data Mining for Hypertext: A Tutorial Survey. SIGKDD Explorations. 2000,1 (2) : 1 -11
  • 3J. Lee and W. Shiu. An Adaptive Website System to Improve Efficiency with Web Mining Techniques. Advanced Engineering Informatics. 2004, 18(3) :130 - 140
  • 4Q. Song and M. Shepperd. Mining Web Browsing Patterns for E - commerce. Computers in Industry. 2006,57(7) :623 -629
  • 5T. Zhang, R. Ramakrishnan, M. Linvy. BIRCH: An Efficient Data Clustering Method for Very Large Databases. Proc. of ACM SIGMOD Int. Conf. on Management of Data, ACM Press, 1996 : 103 - 114
  • 6R. Ng, J. Han. Efficient and Effective Clustering Methods for Spatial Data Mining. In Proceedings of the 20th International Conference on Very Large Databases, Santiago, Chile, Morgan Kaufmann, 1994 : 144 - 155
  • 7G. Sheikholeslami, S. Chatterjee, A. Zhang. Wavecluster: A Multi - Resolution Clustering Approach for Very Large Spatial Databases. Proceed- ings of the 24th International Conference on Very Large Databases, New York , 1998 : 428 - 439
  • 8黄明,魏静波,牛娃.对Apriori算法的进一步改进[J].大连铁道学院学报,2003,24(4):47-50. 被引量:6
  • 9高坚.基于免疫遗传算法的多维关联规则挖掘[J].计算机工程与应用,2003,39(32):185-186. 被引量:10
  • 10N. Chen, A. Chen, L. Zhou, L. Liu. A Fast Algorithm for Mining Sequential Patterns from Large Databases. Computer Science and Technology. 2001,16 (1): 1-12

二级参考文献16

  • 1刘勇 康立山 等.非数值并行算法--遗传算法[M].科学出版社,1998,8..
  • 2JIAWEI HAN MICHELINE KAMBER.Data mining Concepts and Techniques(数据挖掘概念与技术(影印版))[M].北京:高等教育出版社,2001..
  • 3Brin S,Motwani R,Ullnan J D et al.Dynamic itemset counting and implication rules for market basket data[C].In:Proc 1997ACM-SIGMOD Int Conf Management of Data,Tucson,Arizona, 1997-05:225-264.
  • 4Han J,Pei J,Yin Y.Mining frequent patterns without candidate genemtion[Cl.In : ACM-SIGMOD, Dallas, 2000.
  • 5Parthasarathy S,Zaki M J,Ogihara M.ParaUel data mining for association rules on shared-memory systems[J].Knowledge and Information Systems, 2001 ;3( 1 ) : 1-29.
  • 6Agrawal R,Srikant R.Fast algorithms for mining association rules[C]. In:Proc of the 20th VLDB Conf Santiago,Chile,1994:487-499.
  • 7Park J,Chen M,Yu P.An effective hash-based algorithm for mining association rules[C].In : Proc 1995 ACM-SIGMOD, Int: Cord Management of Data,San Jose,CA, 1995-05 : 175-186.
  • 8Zaki M J.Parallel and distributed association mining:A survey[J]. IEEE Concurrency,Special Issue on Parallel Mechanisms for Data Mining, 1999;7(4) : 14-25.
  • 9刘勇 康立山等著.非数值并行算法-遗传算法[M].科学出版社,1998..
  • 10铁治欣,陈奇,俞瑞钊.关联规则采掘综述[J].计算机应用研究,2000,17(1):1-5. 被引量:48

共引文献14

同被引文献38

引证文献9

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部