期刊文献+

热机电耦合智能板结构的随机性分析 被引量:6

Randomicity Analysis of Piezothermoelasticity Intelligent Plate
下载PDF
导出
摘要 对具有随机参数的热机电耦合智能薄板结构提出一种包含4个位移节点、2个电势节点和8个温度节点的有限元模型,用平板型壳体单元模型描述其位移场,用线性插值方法描述其电势场和温度场。基于虚功原理导出了智能薄板的热机电有限元方程,通过各响应量对诸随机参数灵敏度的解析求解和一次二阶矩法,依次求得结构固有频率、固有振型、温变、位移以及输出电压等随机响应的数字特征。以悬臂智能板为例,将所得计算结果与Monte Carlo数值模拟法的结果进行比较,证明了所提出的处理方法可行且有相当高的精度。 An element model including 4 displacement nodes,2 electric potential nodes and 8 temperature nodes is presented.Its displacement field is defined by means of plane shell element model,and its electric potential field and temperature field are both defined by means of linear interpolation,the detailed element equations are deduced by using virtual work principle.Through the analytic solutions of sensitivities with respect to random parameters and first order second moment method,the numerical characteristics of natural frequencies,mode shapes,temperature field,displacement field and output voltages are solved in turn. Finally,an intelligent cantilever plate is taken as an example.The numerical results are compared with those of Monte Carlo method, the results show that the computing process presented is feasible and has very good precision.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第4期21-28,35,共9页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划(863计划 2006AA04Z402) 陕西省自然科学基金(2005A009)资助项目
关键词 热机电耦合 有限元法 随机参数 灵敏度 一次二阶矩法 蒙特卡罗法 数字仿真 Piezothermoelasticity Finite element method Random parameter Sensitivity First order second moment method Monte Carlo method Numerical simulation
  • 相关文献

参考文献13

二级参考文献47

  • 1陈塑寰,刘寒冰,韩万芝.形状不确定性结构动特性分析的随机边界元法[J].固体力学学报,1993,14(3):265-270. 被引量:6
  • 2钟万勰,林家浩.陀螺系统与反对称矩阵辛本征解的计算[J].计算结构力学及其应用,1993,10(3):237-253. 被引量:13
  • 3[1]Zhang Y M,Chen S H,Liu Q L,Liu T Q.Stochastic perturbation finite elements.Computers & Structures,1996,59(3):425-429
  • 4[2]Zhang Y M,Wen B C,Chen S H.PFEM formalism in Kronecker notation.Mathematics and Mechanics of Solids.1996,1(14):445-461
  • 5[3]Wen B C,Zhang Y M,Liu Q L.Response of uncertain nonlinear vibration systems with 2D matrix functions.Int.J.Nonlinear Dynamics,1998,15(2):179-190
  • 6[4]Vetter W J.Matrix calculus operation and Taylor expansions.SLAM Review,1973,15:352-369
  • 7Vanmarcke E, Shinozuka M, Nakagiri S, Schueller G, Grigoriu M. Random fields and stochastic finite element methods[J]. Structural Safety, 1986,3: 143-166.
  • 8Ibrahim R A. Structural dynamics with uncertainties[J]. Applied Mechanics Review, 1987,15(3):309-328.
  • 9Benaroya H, Rebak M. Finite element methods in probabilistic structural analysis: a selective review[J]. Applied Mechanics Review,1988,41 : 201-213.
  • 10Collins J D, Thomsom W T. The eigenvalue problem for structural systems with statistical properties[J]. AIAA J, 1969,7(4) :642-648.

共引文献573

同被引文献48

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部