期刊文献+

利用植物根系形态形成机理的加筋薄壳结构拓扑优化设计 被引量:22

Topology Design Optimization of Stiffened Thin-wall Shell Structures Based on Growth Mechanism of Root System
下载PDF
导出
摘要 将自然界植物根系的形态形成机理应用于加筋薄壳结构加强筋分布设计方法的研究。将加筋薄壳结构加强筋的分布看成一个逐渐形成的过程,则此过程应能自适应于一定的工作条件,使结构逐步趋向具有最佳力学性能的最优结构,这样的过程和自然界中植物根系的形态形成过程具有一定的相似性。在对植物根系形态形成机理进行探讨的基础上,建立基于形态形成机理的加筋薄壳结构加强筋设计准则,即为了得到最小柔顺度结构,结构上的加强筋应沿着结构的应变能相对于加强筋断面积的设计灵敏度大的方向成长,且成长速度也与设计灵敏度成比例。以加筋薄壁圆柱壳结构为例进行加强筋的分布设计,用有限元法对设计结果进行验证。结果表明,提出的利用植物根系形态形成机理的结构拓扑优化设计方法比现有的方法简单高效,并且由于其设计结果是符合工程习惯的清晰加强筋分布,而不是模糊的密度分布,更有利于结构拓扑优化技术的实际应用。设计结果可作为进一步详细设计的初始优化模型。 The growth mechanism of root system in nature is applied to the research of the topology design optimization technique for stiffened thin-wall shell structures. The process of the stiffener generation on a thin-wall shell structure can be regarded as a gradual growth process to achieve a global optimum by adapting to the local working condition, which is similar to the growth process of root system of plants. The design criterion of the stiffener layout on thin-wall shell structures is suggested on the basis of the growth mechanism of root system morphology, i.e., the growth direction and velocity of a stiffener are decided by its design sensitivity, which is the derivation of the strain energy with respect to its cross-sectional area in the case of the minimum compliance design problem. The numerical results of stiffened thin-wall cylindrical shell are illustrated, and validated by the finite element analysis. The suggested design method is simpler and more effective than the conventional methods, and it is more applicable to the practical pro blem because the result is legible distribution of the stiffeners rather than the vague density distribution. The design results can be used to the initial optimum models in the further detail design process.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第4期201-205,共5页 Journal of Mechanical Engineering
基金 上海市自然科学基金(04ZR14098) 上海市教委发展基金(05EZ45)资助项目
关键词 拓扑优化 仿生设计 最小柔顺度 加筋薄壳结构 Topology optimization Bionic design Minimum compliance Stiffened thin-wall shell
  • 相关文献

参考文献9

  • 1ANSOLA R, CANALES J, TARRAGO J A, et al. Combined shape and reinforcement layout optimization of shell structures[J]. Structural and Multidisciplinary Optimization 2004, 27(4): 219-227.
  • 2LUO J, GEA H C. A systematic topology optimization approach for optimal stiffener design[J]. Structural Optimization, 1998, 16(4): 280-288.
  • 3KROG L A, OLHOFF N. Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives[J]. Computers & Structures, 1999,72(4-5): 535-563.
  • 4王书亭,左孔天.基于均匀化理论的拓扑优化算法研究[J].华中科技大学学报(自然科学版),2004,32(10):25-27. 被引量:8
  • 5QUERIN O M, XIE Y M, STEVEN G P. Evolutionary structural optimization (ESO) using a bi-directional algorithm[J]. Engineering Computations, 1998, 15:1 031-1 048.
  • 6荣见华,姜节胜,胡德文,颜东煌,付俊庆.基于应力及其灵敏度的结构拓扑渐进优化方法[J].力学学报,2003,35(5):584-591. 被引量:82
  • 7KALLASSY A, MARCELIN J L. Optimization of stiffened plates by genetic search[J]. Structural Multidisciplinary Optimization, 1997, 13(2): 134-141.
  • 8崔海涛,桑韧,温卫东.基于遗传算法的连续结构拓扑优化分析[J].南京航空航天大学学报,2004,36(2):159-163. 被引量:9
  • 9MATTHECK C. Design in nature: Learning from trees[M]. Berlin Heidelberg: Springer-Verlag, 1998.

二级参考文献17

  • 1Rong JH, Xie YM, Yang XY, et al. Topology optimization of structures under dynamic response constriants. Journal of Sound and Vibration, 2000, 234(2): 177-189.
  • 2Rong JH, Xie YM. Yang XY. An improved method for evolutionary structural optimization against buckling. J Computers & Structures, 2001, 79:253,-263.
  • 3Xie YM. Steven GP. Evolutionary Structural Optimization.London: Springer-Verlag Limited, 1997.
  • 4Kim H, Querin QM, Sgeven GP, eg al. Development of an intelligent cavity creation (ICC) algorithm for evolutionary structural optimization. In: Proceedings of the Australian Conference on Structural Optimization, Sydney,1998. 241-249.
  • 5Querin OM, Young V, Steven GP, et al. Computational efficiency and validation of bi-directional evolutionary structural optimization. Computer Methods in Applied Mechanics and Engineering, 2000, 189:559-573.
  • 6Li Q, Steven GP, Xie YM. On equivalence between stress criterion and stiffness criterion in evolutionary structural optimization, Structural Optimization, 1999, 18(1): 67-73.
  • 7Martin Philip Bendsoe, Noboru Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988,71: 197-224
  • 8Suzuki K, Kikuchi N. A homogenization method for shape and topology optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 93: 291-381
  • 9Kawamura H, Ohmori H, Kito N. Truss topology optimization by a modified genetic algorithm[J]. Structural and Multidisciplinary Optimization, 2002, 23(6):467~472.
  • 10Steven G, Querin O, Xie M. Evolutionary struc-tural optimization (ESO) for combined topology and size optimization of discrete structures[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(4):743~754.

共引文献91

同被引文献207

引证文献22

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部