期刊文献+

粘性依赖密度的Navier-Stokes方程组的不连续解

Discontinuous Solutions of the Navier-Stokes Equations for Compressible Flow with Density-Dependent Viscosity
下载PDF
导出
摘要 该文研究了一类粘性系数依赖于密度的一维可压缩Navier-Stokes方程组的自由边界问题.对初始密度是不连续的情形,证明了其解的局部存在性和唯一性.其结果说明:不论初始密度的振荡幅度有多大,在某个时间段[0,T]上,气体内部不会产生真空状态,气体和真空的分界也是以有限速度传播的. In this paper, the author studies the free boundary problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. The author proves the local (in time) existence and uniqueness result with discontinuous initial density. The important physical consequences of the result are that no vacuum states can occur in the interior of the gas, and the interface separating the gas and vacuum propagates with finite speed in local time, no matter how large the oscillation of the initial density.
作者 张挺
机构地区 浙江大学数学系
出处 《数学物理学报(A辑)》 CSCD 北大核心 2008年第2期214-221,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(10271108 10571158)资助
关键词 可压缩Navier-Stokes方程组 粘性系数依赖于密度 Compressible Navier-Stokes equations Density-dependent viscosity.
  • 相关文献

参考文献9

  • 1Hoff D, Serre D. The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J Appl Math, 1991, 51(4): 887-898
  • 2Xin Z P. Blow-up of smooth solution to the compressible Navier-Stokes equations with compact density. Comm Pure Appl Math, 1998, 51(3): 229-240
  • 3Zel'dovich Y B, Raizer Y P. Physics of shock waves and high-temperature hydrodynamic phenomena. New York: Academic Press, 1967
  • 4Liu T P, Xin Z P, Yang T. Vacuum states of compressible flow. Discrete Contin Dynam Systems, 1998, 4(1): 1-32
  • 5Okada M, Matusu-Necasova S, Makino T. Pree boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity. Ann Univ Ferrara Sez Ⅶ(N S), 2002, 48: 1-20
  • 6Yang T, Yao Z A, Zhu C J. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm Partial Differential Equations, 2001, 26(5-6): 965-981
  • 7Jiang S, Xin Z P, Zhang P. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods and Applications of Analysis,2005, 12(3): 239-251
  • 8Hoff D. Discontinuous solutions of the Navier-Stokes equations for compressible flow. Arch Rational Mech Anal, 1991, 114(1): 15-46
  • 9Hoff D. Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states. Z angew Math Phys, 1998, 49(5): 774-785

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部