期刊文献+

兰辛森林数据的空间统计分析(英文) 被引量:1

Spatial Statistical Analysis of Lansing Woods Data
下载PDF
导出
摘要 利用一元J函数,多元J函数分析了兰辛森林数据,获得了许多有价值的结果.我们的结果也说明了空间统计分析方法对理解一片森林中各种树形成分布的原因是有帮助的.因此,我们可以根据得到的统计规律种植和砍伐树种,促进木材的生产. Valuable results are obtained in this paper through the analysis of Lansing woods data with the application of J function and Jij function. It is proved through the results that spatial statistical anal- ysis methods are helpful for understanding the causes of the patterns observed in a forest stand. Trees may be planted and harvested accordingly, which hopefully will promote wood production.
机构地区 云南大学统计系
出处 《昆明理工大学学报(理工版)》 2008年第2期112-117,共6页 Journal of Kunming University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金数学天元基金资助项目(项目编号:10626048) 昆明理工大学理学重点学科建设基金资助项目(项目编号:14078015) 昆明理工大学科学研究启动基金资助项目(项目编号:校青2006-28)
关键词 一元J函数 多元J函数 空间统计 J function Jij. function spatial statistics
  • 相关文献

参考文献12

  • 1Baddeley A J,Gill R D. Kaplan -Meier estimators for interpoint distance distributions of spatial point processes[ J]. Annal of Statistics ,1997(25) :263 -292.
  • 2Baddeley A J, Kerscher M, Schladitz M K,et al. Estimating the J function without edge correction [ J ]. Statistics Neerlandica, 2000, (54) :315 - 328.
  • 3Barlett M S. The statistics analysis of spatial pattern[ M]. London: Chapman & Hall, 1975.
  • 4Cressie N A C. Statistics for spatial data[ M]. New York: John Wiley and sons, 1991.
  • 5Diggle P J. Statistical analysis of spatial point patterns[ M]. London: Academic Press, 1983.
  • 6Gerrard D J. Competition quotient:a new measure of the competition affection individual forest trees [ J ]. Agriculture Experiment Station, 1969, ( 1 ) : 1 - 42.
  • 7Ripley B D. Modeling spatial pattern[ J]. Journal of the Royal Statistical Society( Series B), 1977, (39) :172 -212.
  • 8Stoyan D. On correlation of marked point processes[J]. Math. Nachr., 1984, (116) :197 -207.
  • 9Stoyan D. Statistical analysis of spatial point processes : A softcore model and corss - correlation of marks [ J ]. Biometrical Journal, 1987, (29) :971 -980.
  • 10Tomppo E. Models and methods for analyzing spatial patterns of trees [ J]. Cowanun. Inst. For. Fenn., 1986 (38):988 - 1008.

同被引文献8

  • 1Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equations of State Calculations by Fastcomputing Machine[ J]. Journal of Chemical Phvsics. 1953.21.1087 -1091.
  • 2HASTINGS W K. Monte Carlo Sampling Methodsusing Markov Chains and Their Application[ J]. Biometrika. 1970,57:97 - 109.
  • 3JORGENSEN B. The Theory of Dispersion Models[ M ]. Chapman and Hall, London, 1997.
  • 4GELMAN S, GEMAN D. Stochastic Relaxation, Gibbs Distribution, and the Bayesian Restoration of Images[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence3,1984,6:721 -741.
  • 5GELMAN A. Markov chain Monte Carlo in Practice[ M ]. London: Chapman and Hall, 1996.
  • 6LINDLEY D V, SMITH A F M. Bayes Estimates for the Linear Model (with Discussion[ J]. Journal of the Royal Statistical Society, 1972, Series B ,34 : 1 - 42.
  • 7COWLES M K, CARLIN B P. Markov Chain Monte Carlo Convergence Diagnostics[ J]. A Comparative Review. Journal of the American Statistical Association, 1996,91,883 -904.
  • 8GELMAN A, MENG X L, STERN H. Posterior Predictive Assessment of Model Fitness via Realized Discrepancies[ J]. Statistical Sinica, 1996,6:733 - 807.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部