期刊文献+

星体的p-极曲率映象与p-仿射表面积 被引量:1

p-Polar Curvature Images of Star Bodies and p-Affine Surface Areas
下载PDF
导出
摘要 引进了星体的p-极曲率映象的概念,建立了p-极曲率映象不等式,并给出了一些特殊几何体的p-极曲率映象与其极体的p-仿射表面积乘积的界.作为p-极曲率映象的一个应用,同时研究了p-混合仿射表面积的p-Minkowski型不等式的推广. This paper introduces the concept of p-polar curvature images of star bodies and establish the p-polar curvature image inequality, and proves the bound for the product of p-affine surface areas of the ppolar curvature images of star bodies and their polar bodies. As an application of p-polar curvature image, we demonstrate the extended p-Minkowski inequality for mixed p-affine surface areas of convex bodies.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期148-151,共4页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(10671117)
关键词 星体p-极曲率映象 p-仿射表面积 不等式 star body p-polar curvature image p-affine surface area inequalities
  • 相关文献

参考文献16

  • 1BOURGAIN J, MILMAN V. New volume ratio properties for convex symmetric bodies in R”[ J ]. Invent Math, 1987, 88:319-340.
  • 2FIREY W J. p-means of convex bodies [ J ]. Math Scand, 1962, 10:17-24.
  • 3FEDERER H. Geometric measure theory [ M ]. New York: Springer-Verlag, 1969:245-260.
  • 4HUG D. Contributions to affine surface area [ J ]. Manuscripta Math, 1996, 91 ( 3 ) :283-301.
  • 5LEICHTWEIβ K. Bemerkungen zur Definition einer erweiterten Affinoberflache yon E. Lutwak [ J ]. Manuscripta Math, 1989, 65 : 181-197.
  • 6冷岗松.凸体的曲率映象与仿射表面积[J].数学学报(中文版),2002,45(4):797-802. 被引量:4
  • 7LUDWIG M, REITZNER M. A characterization of affine surface area [J]. Adv in Math, 1999, 147 ( 1 ) : 138- 172.
  • 8LUTWAK E. On some affine isoperimetric inequalities[J]. J Differential Geom, 1986, 23:1-13.
  • 9LUTWAK E. Centroid bodies and dual mixed volumes [J]. Proc London Math Soc, 1990, 60:365-391.
  • 10LUTWAK E. Extended affine surface area [ J ]. Adv in Math, 1991, 85:39-68.

二级参考文献15

  • 1Alexander R., Zonoid theory and Hilbert's fourth problem, Geom. Dedicata, 1988, 28: 199-211.
  • 2Ball K. M., Shadows of convex bodies, Trans. Amer. Math. Soc., 1991, 327: 891-901.
  • 3Bourgain J., Milman V., New volume ratio properties for convex symmetric bodies in Rn, Ivent. Math., 1987,88: 319-340.
  • 4Brannen N. S., Volumes of projection bodies, Mathematika, 1996, 43: 255-264.
  • 5Gordon Y., Meyer M., Reiser S., Zonoids with minimal volume product-a new proof, Proc. Amer. Math.Soc., 1988, 104: 273-276.
  • 6Guggenheimer H., Applicable Geometry, Geometry, Global and Local Convexity, R. E. Krieger, Huntington,NY 1997.
  • 7Kaiser M. J., The lower bound for the volume product Vn(K)Vn(K*), Appl. Math. Lett., 1994, 7: 1-5.
  • 8Lutwak E., On some affine isoperimetricc inequalities, J. Differential Geom., 1986, 23: 1-13.
  • 9Lutwak E., Volume of mixed bodies, Trans. Amer. Math. Soc., 1986, 294: 487-500.
  • 10Lutwak E., Extended affine surface area, Adv. Math., 1991, 85: 39-68.

共引文献3

同被引文献11

  • 1LUTWAK E. Dual mixed volumes[J].Pacific Journal of Mathematics,1975.531-538.
  • 2FIREY W J. p-means of convex bodies[J].Mathematica Scandinavica,1962.17-24.
  • 3FIREY W J. Polar means of convex bodies and a dual to the Brunn-Minkowski theorem[J].Canadian Journal of Mathematics,1961.444-453.
  • 4LUTWAK E. The Brunn-Minkowski-Firey theory Ⅰ:mixed volume and the Minkowski problem[J].Journal of Differential Geometry,1993,(01):131-150.
  • 5LUTWAK E. The Brunn-Minkowski-Firey theory Ⅱ:affine and geominimal surface area[J].Advances in Mathematics,1996,(02):244-294.
  • 6LUTWAK E,YANG D,ZHANG G Y. Lp John ellipsoids[J].Proceedings of the London Mathematical Society,2005.497-520.
  • 7HABERL C. Lp intersection bodies[J].Advances in Mathematics,2008.2599-2624.
  • 8KOLDOBSKY A. Fourier analysis in convex geometry[M].RI:American Mathematical Society,2005.13-14.
  • 9KALTON N J,KOLDOBSKY A,YASKIN V. The geometry of Lo[J].Canadian Journal of Mathematics,2007,(05):1029-1049.
  • 10GARDNER R J. Geometric tomography[M].Cambridge:Cambridge University Press,2006.16-22.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部