期刊文献+

基于ICA的图像盲分离算法

Blind Separation of Image Based on ICA
下载PDF
导出
摘要 通过对独立分量分析算法的研究,介绍了该算法的基本模型及目前应用最广泛的快速定点ICA算法的数学原理.通过仿真试验结果表明,用该算法对随机混合的3幅图像进行盲分离,取得了理想的效果. Independent Component Analysis is a new signal processing method which develops rapidly during last few years. This paper introduces the basic model of the algorithm, analyzes the math principle of frequently-used rapid fixed-point algorithm for independent component analysis, and applies the algorithm in blind separation of three images which are mixed randomly. The result shows that the algorithm is effective and reliable.
出处 《重庆工学院学报(自然科学版)》 2008年第4期104-107,111,共5页 Journal of Chongqing Institute of Technology
基金 重庆市自然科学基金资助项目(CSTC 2006BA6016)
关键词 独立分量分析 投影追踪 负熵 快速ICA Independent Component Analysis projection pursuit negentropy fast-ICA
  • 相关文献

参考文献6

  • 1[1]Hyvarinen A.Independent Component Analysis[J].John Wiley and Sons,2001(5):223-225.
  • 2王毅,牛奕龙,陈海洋.独立分量分析的基本问题与研究进展[J].计算机工程与应用,2005,41(27):38-42. 被引量:19
  • 3[4]Friedman J H.Exploratory projection pursuit[J].Journal of American Statistical Association,1987,82(397):249-266.
  • 4[5]Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[J].IEEE Trans On Neural Network,1999,10(3):626-634.
  • 5[6]Karhunen J.Application of neural blind separation to signal and image Processing[C]//Proc ICASSP.[S.l.]:[s.n.],1997:131-134.
  • 6吴正国,唐劲松,章林柯,等译.自适应盲信号与图像处理.北京:电子工业出版社,2005.

二级参考文献31

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2Makeig S et al.Independent component analysis in electroencephalographic data[C].In:Advances in Neural Information Processing Systems,Denver,CO:MIT Press, 1996:145~151
  • 3Lee T W et al. Independent component analysis using an extended Infomax algorithm for mixed subgaussian and supergaussian sources[J].Neural Computation, 1999; 11:417~441
  • 4Papadias C B,Paulraj A.A constant modulus algorithm for multi-user signal separation in presence of delay spread using antenna arrays[J].IEEE Signal Processing Lett, 1997; 4 (6): 178~181
  • 5Bell A J ,Sejnowski T J.An information maximization approach to blind separation and blind deconvolution[J].Neural Computation, 1995;7(6): 1004~1034
  • 6Pearlmutter B A,Parra L C.A context-sensitive-generalization of ICA[C].In:Proc Int Conf Neural Information Processing,ICONIP'96,Hong Kong, 1996:151~157
  • 7Karhunen J et al.Applications of neural blind separation to signal and image processing[C].In: Proc ICASSP, 1997; ( 1 ): 131~134
  • 8Cardoso J F,Laheld B H.Equivariant adaptive sources separation[J].IEEE Trans Signal Processing, 1996 ;44(10): 3017~3030
  • 9Cichocki A,Unbehauen R,Moszczynski L et al.A new on-line adaptive learning algorithm for blind separation of sources[C].In:Proc ISANN-94, Tainan, Taiwan, 1994: 406~411
  • 10Cichocki A,Unbehauen R,Rummert E.Robust learning algorithm for blind separation of signals[J].Electronics Letters, 1994; 30 ( 17 ):1386~1387

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部