期刊文献+

Climatic Features of Cloud Water Distribution and Cycle over China 被引量:3

Climatic Features of Cloud Water Distribution and Cycle over China
下载PDF
导出
摘要 Analyses of cloud water path (CWP) data over China available from the International Satellite Cloud Climatology Project (ISCCP) are performed for the period 1984-2004. Combined with GPCP precipitation data, cloud water cycle index (CWCI) is also calculated. The climatic distributions of CWP are found to be dependent on large-scale circulation, topographical features, water vapor transport and similar distribution features which are found in CWCI except in the Sichuan Basin. Influenced by the Asia monsoon, CWP over China exhibits very large seasonal variations in different regions. The seasonal cycles of CWCI in different regions are consistent and the largest CWCI occurs in July. The long-term trends of CWP and CWCI are investigated, too. Increasing trends of CWP are found during the period with the largest increase found in winter. The decreasing trends of CWCI dominate most regions of China. The differences in long-term trends between CWP and CWCI suggest that CWP only can influence the variation of CWCI to a certain extent and that other factors need to be involved in cloud water cycle researches. This phenomenon reveals the complexity of the hydrological cycle related to cloud water. Analyses of cloud water path (CWP) data over China available from the International Satellite Cloud Climatology Project (ISCCP) are performed for the period 1984-2004. Combined with GPCP precipitation data, cloud water cycle index (CWCI) is also calculated. The climatic distributions of CWP are found to be dependent on large-scale circulation, topographical features, water vapor transport and similar distribution features which are found in CWCI except in the Sichuan Basin. Influenced by the Asia monsoon, CWP over China exhibits very large seasonal variations in different regions. The seasonal cycles of CWCI in different regions are consistent and the largest CWCI occurs in July. The long-term trends of CWP and CWCI are investigated, too. Increasing trends of CWP are found during the period with the largest increase found in winter. The decreasing trends of CWCI dominate most regions of China. The differences in long-term trends between CWP and CWCI suggest that CWP only can influence the variation of CWCI to a certain extent and that other factors need to be involved in cloud water cycle researches. This phenomenon reveals the complexity of the hydrological cycle related to cloud water.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第3期437-446,共10页 大气科学进展(英文版)
基金 CAS/SAFEA International Partnership Program for Creative Research Teams, the Knowledge Innovation Program of Chinese Academy of Sciences (Project No. KZCX2-YW-202) National Basic Research Program of China (Grant No. 2006CB403600) the National Natural Science Foundation of China(Grant Nos. 40437017, 40221503) "The Climate System Model Development and Application Studies" of International Partnership Creative Group program of Chinese Academy of Sciences, and the Key Sci. & Tech. Supporting Project of the Ministry of Science and Technology of China(2006BAC12B03).
关键词 ISCCP cloud water path cloud water cycle climatic features ISCCP, cloud water path, cloud water cycle, climatic features
  • 相关文献

参考文献3

二级参考文献6

共引文献941

同被引文献72

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部