摘要
记ZG为有限群G的整群环,△~n(G)为增广理想△(G)的n次幂,Q_n(G)=△~n(G)/△^(n+1)(G)为G的增广商群.本文考虑了二面体群D_(2tk)(k奇)和m次对称群S_m,证明了Q_n(D_(2tk))为秩不超过2t+1的基本2-群以及Q_n(S_m)≌Z_2.
Let G be a finite group, ZG its integral group ring and An(G) the nth power of the augmentation ideal △(G), denote Qn(G) = △^n(G)/△^n+1(G) the augmentation quotient groups of G. In this paper, dihedral group D2^tk (kodd) and m' th symmetric group Sm are considered. We show Qn(D2tk) is an elementary 2-group and its rank is no more than 2t + 1. As for Qn(Sm), we have Qn(Sm) Z2.
出处
《数学进展》
CSCD
北大核心
2008年第2期163-170,共8页
Advances in Mathematics(China)
基金
NSFC(No.10271094)
关键词
整群环
增广商群
二面体群
对称群
integral group ring
augmentation quotient group
dihedral group
symmetric group