期刊文献+

三角Jacobi双代数胚及其形变

Triangular Jacobi Bialgebroids and Deformation
下载PDF
导出
摘要 三角Jacobi双代数胚是Mackenzie,徐平所定义的三角李双代数胚的推广.本文将讨论三角Jacobi双代数胚的一些性质,并利用Nijenhuis张量使之成为形变的Jacobi双代数胚.从而可以得到一个Jacobi-Nijenhuis流形. Trangular Jacobi bialgebroids are a generalization of triangmar Lie biaigebroids in the sense of Mackenzie and Xu. In this paper, we will discuss the properties of this type.Meanwhile, we will show the deformed triangular Jacobi bialgebroids, as a consequence, we get a strict Jacobi-Nijenhuis structure.
出处 《数学进展》 CSCD 北大核心 2008年第2期171-180,共10页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10371109)
关键词 Jacobi双代数胚 三角Jacobi双代数胚 Nijenhuis张量 形变Jacobi双代数胚 Jacobi bialgebroids triangular Jacobi bialgebroids Nijenhis tensor deformedJacobi bialgebroids
  • 相关文献

参考文献10

  • 1Igesina, D. and Marrero, J.C., Generalized Lie bialgebroids and Jacobi structures, arXiv:math.DG/0008105.
  • 2Liu Z., Weinstein, A. and Xu P., Manin triples for Lie bialgebroids, J. Diff. Geom, 1997, 45: 547-574.
  • 3Vaisman, I., The BV-algebra of a Jacobi manifolds, (1999)arXiv:math.DG/9904112.
  • 4Weinstein, A., The local structure of Poisson manifolds, J. Diff. Geom, 1983, 18: 523-557.
  • 5Marrero,J., Monterde, J., Padron, E., Jacobi-Nijenhuis manifolds and compatible Jacobi structures, C. R. Acad. Sci. Paris, 1999, 329: 797-802.
  • 6Kirillov, A., Local Lie algebras, Russian Math. Surveys, 1976, 31: 55-75.
  • 7Igesina, D. and Marrero, J.C., Some linear Jacobi structures on vector bundles, C. R. Aced. Sci. Paris, 2000, 331: 125-130.
  • 8Nunes da Costa, J.M., Campatible Jacobi manifolds: geometry and reduction, Y. Phys. A: Math. Gen, 1998, 31: 1025-1033.
  • 9Kosmann-Schwarzbach, Y. and Magri, F., Poisson-Nijenhuis structures, Ann. Inst. Henn. Poincare A, 1990, 53: 35-81.
  • 10Nunes da Costa, J.M., A Characterization of Strict Jacobi-Nijenhuis Manifolds Through The Theory of Lie algebroids, Reports on Math. Phy., 2002, 50(3):.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部