期刊文献+

基于Hopfield网络的三维显微图像复原 被引量:2

Three-dimension Microscopic Image Restoration Based on the Hopfield Network
下载PDF
导出
摘要 在实际显微系统中,由于样本的折射率和透镜折射率不匹配,致使不同深度的PSF是不一样的.为了实现三维显微图像的复原,提出了基于三维高斯PSF的复原算法,将Hopfield神经网络用于三维图像序列的复原中,实验证明连续Hopfield网络能够恢复深度变化图像模型的模糊图像. A full-parallel Hopfield neural network is presented based on a new mod al (3D) Gaussian point of the diffraction of the specimen and the one of spread function (PSF) to restore t microscope's objective and the di the microscope, it leads to the diff he microscopic op fference between el of the three dimension- tical slices. As the result the refraction rate in the erent PSF among the depth-variant plane in the practical microscopic system. In order to restore the 3D microscopic image, a new restoring algorithm is proposed based on the 3D Gauss PSF. It is the first time that the Hopfield network is used in 3D image restoration, and the performance shows that the continuous Hopfield network can restore the blurred image of the depth-variant image model.
作者 孟猛 王宇
出处 《武汉理工大学学报(交通科学与工程版)》 2008年第2期236-239,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目资助(批准号:60372079)
关键词 HOPFIELD 三维高斯点扩展函数 三维显微图像 图像复原 深度变化图像模型 Hopfield neural network 3D Gaussian PSF three dimensional microscopy image restoration depth-variant image model
  • 相关文献

参考文献8

  • 1Pawley J P. Handbook of Biological Confocal Microscopy[M]. 2nd ed. New York: Plenum Press,NY, 1995.
  • 2Mcnally J G. Computational optical-sectioning microscopy for 3D quantitation of cell motion: results and challenges[C]//Proc. SPIE Image Reconstruction and Restoration. Bellingham :SPIE, 1994, 2302 : 342-351.
  • 3Paik J K, Katsaggelos A K. Image restoration using a modified Hopfield network [J]. IEEE Trans. Image Processing, January 1992,1 (1): 49-63.
  • 4Andrews H C, Hunt B R. Digital image restoration [M]. Englewood Cliffs: Prentice-Hall, 1977.
  • 5Hopfield J J, Tank D W. Neural computation of decisions in optimization problems [J]. Biol. Cybern, May 15,1985,24:1 469-1 475.
  • 6张亮,罗鹏飞.基于连续函数的自反馈Hopfield神经网络图像复原算法[J].计算机与现代化,2004(7):62-64. 被引量:2
  • 7Gibson F S, Lanni F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy [J]. J. Opt. Soc. Am., 1991,A8:1 601-1 613.
  • 8刘莹,何小海,陶青川,赵佳.基于三维高斯模型的参数盲解卷积算法[J].光电子.激光,2006,17(4):493-497. 被引量:13

二级参考文献21

  • 1赵维谦,邱丽荣,丁雪梅,谭久彬.被测物离焦状态对共焦显微系统横向分辨特性的影响[J].光电子.激光,2004,15(8):963-966. 被引量:3
  • 2黄向东,谭久彬.激光共焦显微图像多尺度边缘提取算法研究[J].光电子.激光,2005,16(4):458-461. 被引量:5
  • 3Y T ZHOU,R Chellappa,A Vaid,B K Jenkins.Image restoration using a neural network[J].IEEE Trans.on Acoust.Speech,Signal Processing,1988,36(7):1141-1151.
  • 4J K Paik,A K Katsaggelos.Image restoration using a modified Hopfield network[J].IEEE Trans.on Image Processing,1992,1(1):49-63.
  • 5J B Abbiss,B J Brames,M A Fiddy.Superresolution algorithms for a modified Hopfield neural network[J].IEEE Trans.on Signal Processing,1991,39(7):1516-1523.
  • 6Vir V Phoha,William J B Oldham.Image recovery and segmentation using competitive learning in a layered network[J].IEEE Trans.on Neural Network,1996,7(4):843-856.
  • 7Y You,M Kaveh.A regularization approach to joint blur identification and image restoration[J].IEEE Trans.on Image Processing,1996,5(3):416-428.
  • 8H S Wong,L P Guan.Adaptive regularization in image restoration using a model-based neural network[J].Opt.Eng.,1997,36(12):3297-3308.
  • 9Y Sun,J G Li,S Y Yu.Improvement on performance of modified Hopfield network for image restoration[J].IEEE Trans.on Image Processing,1995,4(5):688-692.
  • 10Gibson F S, Lanni F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy[J]. J Opt Soc Am A,1991,8:1601-1613.

共引文献13

同被引文献14

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部