期刊文献+

水利设施运行中水质污染的混沌非线性效应及控制方法

Chaotic Nonlinear Effect of Water Pollution in Operation of Water Conservancy and the Control Method
下载PDF
导出
摘要 采用混沌非线性技术对水利设施运行造成的水质污染效应进行了分析,通过葛洲坝船闸运行实验结果发现,受影响的12km长的河道水位变幅1.50m,最大变幅时间11:00,16:00,20:00,22:00时.物理化学特性及主要污染物COD等在不同水域浓度差异极大,表现高浓度区远离污染源分布区,水体质量与河流水文期参数无明显变化,关系模糊,具有突变、约束、开放、自组织混沌非线性效应.应用耗散结构理论建立了水质污染非线性动力学模型,经实测验证误差为3%~6%. In this paper, the effect of water pollution caused by operation of water conservancy is analyzed with the chaotic nonlinear method. According to the result of ship lock gate operation experiment in GeZhouBa, it is found that the amplitude of water level changing is 1.50m in influenced river which is 12km long, and the time of max amplitude is 11:00, 16:00, 20:00, 22:00. Physical chemistry properties and main pollution (COD,etc.) are greatly different in different areas. The high polluted area is far from the pollution source. Water quality and parameter of hydrology are not changed obviously, the relation between them is obscure, and has a chaotic nonlinear effect. A nonlinear dynamic model of water pollution is built with the theory of dissipation structure. It is verified that the error is 3%~ 6% in practice.
出处 《武汉理工大学学报(交通科学与工程版)》 2008年第2期327-330,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 三峡大学重大科技基金项目资助(批准号:2005-3)
关键词 水利设施 混沌非线性 水质污染效应 动力学模型 water conservancy chaotic nonlinear effect model
  • 相关文献

参考文献6

  • 1Ambrosetti A,Prodi G. A primer of nonlinear analysis[M]. Taipei:Taipei Publisher of Taiwan University, 2001:11-23.
  • 2彭静,河源能久,玉井信行.线性与非线性紊流模型及其在丁坝绕流中的应用[J].水动力学研究与进展(A辑),2003,18(5):589-594. 被引量:22
  • 3陈继光.基于Lyapunov指数的观测数据短期预测[J].水利学报,2001,32(9):64-67. 被引量:22
  • 4Konishi K. Stability extended delayed feedback control for discretetime chaotic systems [J]. IEEE Trans. Circuits and Systems, 1999,46 (10) : 1 285- 1 288.
  • 5Islam M N, Sivakumar B. Characterization and prediction of runoff dynamics: a nonlinear dynamical view [J]. Advances in Water Resources, 2002, 25 (2): 179-190.
  • 6Jayawardena A W, Li W K, Xu P. Neighbourhood selection for local modeling and prediction of hydrological time series [J]. Journal of Hydrology, 2002, 258:40-57.

二级参考文献12

  • 1FUKUOKA S, NISHIMURA T and KAWAGUCHI A. Numerical analysis of the flow around submerged groins[A]. Proc Symp on River Hydraulics and Environments[C]. 1995. 211-216.
  • 2HAYASE T, HUMPHREY J A C and GREIF R. A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures[J]. Journal of Computational Physics. 1992, 98: 108-118.
  • 3KATO M and LAUNDER B E. The modeling of turbulent flow around stationary and vibrating square cylinders[A]. 9th Symposium on Turbulent Shear Flows [C]. Kyoto, Japan, August, 1993. 1-6.
  • 4KAWAHARA Y and PENG J. Three-dimensional numerical simulation of flood flows around groins [A] Proc 2nd Asianference[C]. 1996.
  • 5SHIH T H, ZHU J and LUMLEY J L. A new Reynolds stress algebraic equation model [J]. Comput Methods Appl Mech Eng, 1995, 125: 287-302.
  • 6SPEZIALE C G and THANGMA S. Analysis of a RNG Based Turbulence Model for Separated Flows [M]. NASA, CR-189600, ICASE Rept No 92-3, 1992.
  • 7TOMINAGA A and CHIBA S. Flow structure around a submerged spur dike[A]. Proc of Annual Meeting of Japan Society of Fluid Mechanics[C]. 1996. 317-318.
  • 8PENG J, KAWAHARA Y and TAMAI N. Numerical analysis of three-dimensional turbulent flows around submerged groins [A]. Proc 27th IAHR Congress [C]. 1997. 244-249.
  • 9ZHU J and SHIH T H. Calculations of turbulent sepa rated flows with two-equation turbulence models[J] Computational Fluid Dynamics Journal, 1994, 3:343-354.
  • 10陈奉苏,混沌学及其应用,1998年

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部