期刊文献+

基于支持向量回归的图像复原方法研究 被引量:3

Image Restoration Method Based on Support Vector Regression
下载PDF
导出
摘要 针对退化图像复原问题,提出了一种基于支持向量回归的退化图像复原方法.该方法利用支持向量机回归算法非线性映射能力,通过训练样本对的学习训练,在退化图像与原始清晰图像之间建立映射关系,然后对测试样本进行复原.实际图像复原实验表明,得到的复原图像在视觉上和定量分析上都获得了比较好的效果.与神经网络方法相比,支持向量机回归算法克服了神经网络的模型选择与过学习问题、局部极小问题等. A new image restoration method is presented and investigated based on support vector regression (SVR). The mapping relationship between degenerated image and clear image is established by train- ing support vector machine. Experimental results show that satisfactory restoration effect is obtained both in visual impression and quantitative analysis. Compared with neural network, the SVR has prominent advantages in selecting model, overcoming over-fitting and local minimum, etc.
出处 《武汉理工大学学报(交通科学与工程版)》 2008年第2期331-334,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目资助(批准号:60372079)
关键词 图像复原 支持向量回归 非线性映射 image restoration support vector regression nonlinear mapping
  • 相关文献

参考文献7

  • 1柏森,张邦礼,曹长修.神经网络图象复原方法的研究进展[J].中国图象图形学报(A辑),2002,7(11):1105-1112. 被引量:14
  • 2Ozkam M K, Erdem A T, Sezan M I. Efficient multiframe wiener restoration of blurred and noisy image sequences[J]. IEEE Transactions on Image Processing, 1992,1(4): 453-478.
  • 3Wu W, Kundu A. Image estimation using fast modified reduced update Kalman filter[J]. IEEE Transactions on Signal Processing, 1992, 40(4) : 915-926.
  • 4Citrin S, Azimi-Sadjadi M R. A full-plane block Kalman filter for image restoration [J]. IEEE Transactions on Image Processing, 1992, 1 (4):488-495.
  • 5Koch S, Kaufman H, Biemond J. Restoration of spatially varying blurred images using multipie model-based extended Kalman filters [J]. IEEE Transactions on Image Processing, 1995, 4 (4): 520-523.
  • 6Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1999.
  • 7Bertsekas D P. Nonlinear programming [M]. Belmont : Athena Scientific, 1995.

二级参考文献15

共引文献13

同被引文献18

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2何江平,文俊浩,邓恬洁,王道乾.基于支持向量机的图像识别[J].重庆大学学报(自然科学版),2006,29(1):57-60. 被引量:9
  • 3闫伟,张浩,陆剑峰.基于支撑向量机的产品质量监控研究应用[J].计算机工程,2006,32(15):184-186. 被引量:1
  • 4PARK S C,MOON M K P.Super-resolution image reconstruction:A technical overview[J].IEEE Signal Processing Magazine,2003,20(3):21-36.
  • 5FARSIU S,ROBINSON M D.Fast and robust multiframe super resolution[J].IEEE Transactions on Image Processing,2004,13(10):1327-1344.
  • 6SICAIROS M G,JAMES S T T.Efficient subpixelimage registration algorithms[J].Optics Letters,2008,33(2):156-158.
  • 7VANDEWALLE P,VATTERLI S S M.A frequency domain ap-proach to registration of aliased images with application to supper-resolution[J].EURASIP Journal on Applied Signal Processing,2006,2006:233-233.
  • 8REDDY B S,CHATTERJI B N.An FFT-based technique for translation,rotation,and scale-invariant image registration[J].IEEE Transactions on Image Processing,1996,5(8):1266-1271.
  • 9PANKAJAKSHAN P,KUMAR V,Detail-preserving image information restoration guided by SVM based noise mapping[J].Digital Signal Processing,2007,17(3):561-577.
  • 10KEREN D,BRADA S P R.Image sequence enhancement using sub-pixel displacements[C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,1988:742-746.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部