期刊文献+

一种新的Gabor小波支持向量机人脸识别算法 被引量:3

Novel Gabor wavelet support vector machines algorithm for human face recognition
下载PDF
导出
摘要 提出了一种新的基于Gabor小波特征重组的支持向量机人脸识别方法。该方法首先计算5个尺度和8个方向的Gabor小波变换结果,再把不同人脸中的同一尺度和方向的变换结果进行特征重组,得到40个新特征矩阵,分别利用PCA方法降维去噪,最后构造40个支持向量机分类器并采用选票决策机制决定识别结果。实验结果表明,该方法不仅拓宽了主元分析法中累积方差贡献率可选范围,并在一定程度上解决了核参数选择难的问题,同时取得了理想识别效果。 A novel support vector machines algorithm for human face recognition based on Gabor wavelet features reorganization was proposed. Firstly, the Gabor wavelets transformation results including five scales and eight directions were calculated and 40 feature matrices which were reconstrueted with the same scale and the same direction transform results of the different face images were obtained. Secondly, the dimensionality reduction and denoised technique with PCA was applied to form the new training samples. Lastly, 40 SVMs classifiers were constructed and the vote decision strategy was used to determine the recognition result. The experimental results show that the proposed method expands the selectable range of the variance contribution rate in PCA method and the difficult problem was settled to select the kernel parameters in the certain stage. At the same time, the ideal recognition rate was obtained.
出处 《海军工程大学学报》 CAS 北大核心 2008年第2期38-42,共5页 Journal of Naval University of Engineering
基金 湖南省自然科学基金项目(06JJ5133)
关键词 GABOR小波 主元分析 支持向量机 人脸识别 Gabor wavelet principal component analysis support vector machines human face recognition
  • 相关文献

参考文献14

  • 1杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 2郑宇杰,杨静宇,吴小俊,於东军.基于独立成分分析和模糊支持向量机的人脸识别方法[J].系统仿真学报,2005,17(7):1768-1770. 被引量:13
  • 3陶亮,庄镇泉.基于小波分解和支持向量机的准正面人脸识别方法[J].电路与系统学报,2003,8(6):107-112. 被引量:8
  • 4DAUGMAN J G. Uncertainty relation for resolution in space, spatial frequency and orientation optimized by twodimensional visual cortical filter [J]. Journal Optical Society America, 1985,2(7):1 160-1 169.
  • 5DAUGMAN J G. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression [J]. IEEE Trans. on Acoustics Speech and Signal Processing, 1988,16(7):1 169-1 179.
  • 6LIU C, WECHSIER H. A Gabor feature classifier for face recognition [C].Proc. of the Eighth IEEE Int-Conf. on Computer Vision. Vancouver, Canada: IEEE, 2001.
  • 7GUO G D, LI S Z, CHAN K L. Support vector machines for face recognition [J]. Image and Vision Computing, 2001,19 : 631-638.
  • 8JUN Q, HE Z S. A SVM face recognition method based on Gabor-featured key points [C]. Proc. of the Fourth Int-Conf. on Machine Learning and Cybernetics. Guangzhou, China: IEEE, 2005.
  • 9SHEN L L, BAIL. Mutual boost learning for selecting Gabor features for face recognition [J]. Pattern Recognition Letters, 2006,27:1 758-1 767.
  • 10XIE X D, LAM K M. Gabor-based kernel PCA with doubly nonlinear mapping for face recognition with a single face image [J]. IEEE Trans. on Image Processing, 2006,15(9):2 481-2 492.

二级参考文献15

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3章照止 林须端.信息论与最优编码[M].上海:上海科学技术出版社,1993..
  • 4Daisuke Tsujinishi,Shigeo Abe.Fuzzy lest squares support vector machines for multiclass problems[J].Neural Networks,2003,16(5-6):785-792.
  • 5Aapo Hyvarinen.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans Neural Networks,1999,10(3):626-634.
  • 6Wu X J,Yang J Y,Wang S T,Guo Y F,Cao Q Y.A new algorithm for generalized optimal discriminant vectors[J].J.Comput.Sci.& Technol.2002,17(3):324-330.
  • 7Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 8Jutten C,Herault J.Independent component analysis versus PCA[C].In:Proceeding of European Signal Processing Conf,1988.287-314.
  • 9Juten C,Herault J.Blind separation of sources,part 1:An adaptive algorithm base on neuromimetic architecture[J].Signal Processing,1991,24(1):1-10.
  • 10张学工译.统计学习理论的本质(第二版)[M].北京:清华大学出版社,2000..

共引文献165

同被引文献27

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部