期刊文献+

一类有理三次插值样条曲线的区域控制 被引量:3

Region Control of a Rational Cubic Interpolating Spline Curve
下载PDF
导出
摘要 将插值曲线约束于给定的区域之内是曲线形状控制中的重要问题。构造了一种分母为三次的C1连续有理三次插值样条。这种有理三次插值样条中含有参数和调节参数,因而给约束控制带来了方便,同时可以通过对参数和调节参数的控制实现C2连续的插值。对该类插值曲线的区域控制进行了研究,给出了将其约束于给定的折线、二次曲线之上、之下或之间的充分条件,最后给出了数值例子。 To constrain the interpolating curves to be bounded in the given region is an important problem in curve design. A rational cubic interpolating spline with cubic denominator is constructed. The sufficient conditions for the interpolating curves to be above, below or between the given broken lines or piecewise quadratic curves are derived. An example is given.
出处 《工程图学学报》 CSCD 北大核心 2008年第2期104-109,共6页 Journal of Engineering Graphics
基金 国家自然科学基金资助项目(20206033) 湖南省自然科学基金资助项目(06JJY4073) 湖南省教育厅科研资助项目(06C791)
关键词 计算机应用 曲线设计 有理插值 三次样条 computer application curve design rational interpolation cubic spline
  • 相关文献

参考文献17

  • 1Barsky B A. The β-spline: a local representation based on shape parameters and fundamental geometric measure [D]. Salt Lake: University of Utah, 1981.
  • 2Dierck P, Tytgat B. Generating the Bezier point of β-spline curve [J]. Computer Aided Geometric Design, 1989, 6(2): 279-291.
  • 3Foley T A. Local control of interval tension using weighted splines [J]. Computer Aided Geometric Design, 1986, 3(2): 281-294.
  • 4Nielson G M. Rectangular v-splines [J]. IEEE Computer Graphics and Application, 1986, 6(1): 35-40.
  • 5Nielson G M. CAGD's Top Ten: What to watch [J]. IEEE Computer Graphics and Application, 1993, 13(1): 35-37.
  • 6Piegl L. On NURBS: a survey [J]. IEEE Computer Graphics and Application, 1991, 11(5): 55-71.
  • 7Schrnidt J W, He B W. Positivity of cubic polynomials on intervals and positive spline interpolation [J]. BIT, 1988, 28(2): 340-352.
  • 8Gregory J A, Sarfraz M, Yuen P K. Interactive curve design using C^2 rational splines [J]. Computer and Graphics, 1994, 18(2): 153-159.
  • 9Sarfraz M. Cubic spline curves with shape control [J]. Computer and Graphics, 1994, 18(5): 707-713.
  • 10Duan Qi, Liu Aikui, Cheng Fuhua (Frank). Constrained interpolation using rational cubic spline with linear denominators [J]. Korean Journal of Computational and Applied Mathematics, 1999, 6(1) 203 -215.

二级参考文献32

  • 1Duan Qi,Computer Graphics,1998年,22卷,4期,478页
  • 2Duan Qi,Internat J Comput Math,1999年,72卷,155页
  • 3Duan Qi,Korean J Comput Appl Math,1999年,6卷,1期,203页
  • 4Duan Qi,Korean J Comput Appl Math,1999年,6卷,3期,537页
  • 5Duan Qi,Comput Craph,1998年,22卷,4期,479页
  • 6BOEHM W, FARIN G, KAHAMANN J. A survey of curve and surface methods[ J]. Computer Aided Geometric Design, 1984,1:1-60.
  • 7NIELSON G M. CAGD's top ten: what to watch[J]. IEEE Computer Graphics and Automation, 1993,6:35-37.
  • 8PIEGL L. On NURBS: a survey[ J ]. IEEE Computer Graphics and Application , 1991,11 (5): 55-71.
  • 9NARSKY B A. The β-spline: a local representation based on shape parameters and fundamental geometric measure[ D]. Salt Lake City:University of Utah, 1981.
  • 10DIERCK P, TYTGAT B. Generating the B' ezier points of β-spline curve[ J]. Comp Aided Geom Design, 1989,6:279-291.

共引文献36

同被引文献27

  • 1谢楠,张晓平.一类有理三次样条的区域控制和逼近性质[J].山东大学学报(工学版),2004,34(6):106-111. 被引量:8
  • 2张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:237
  • 3闵杰,陈邦考.一种四次有理插值样条及其逼近性质[J].高等学校计算数学学报,2007,29(1):57-62. 被引量:12
  • 4Boehm W,Farin G,Kahamann J.A survey of curve and surface methods[J].Computer Aided Geometric Design, 1984,1 ( 1 ) : 1-60.
  • 5Nielson G M.CAGD'S top ten:What to watch[J].IEEE Computer Graphics and Application, 1993,13 ( 1 ) : 35-37.
  • 6Piegl L.On NURBS:A survey[J].IEEE Computer Graphics and Application, 1991,11(5):55-71.
  • 7Barsky B A.The fl-spline: A local representation based on shape parameters and fundamental geometric measure[D].Salt Lake:University of Utah,1981.
  • 8Dierck P,Tytgat B.Generating the Bezier point of β-spline curve[J]. Computer Aided Geometric Design, 1989,6(2) :279-291.
  • 9Foley T A.Local control of interval tension using weighted splines[J]. Computer Aided Geometric Design, 1986,3(2) :281-294.
  • 10Nielson G M.Rectangular v-splines[J].IEEE Computer Graphics and Application, 1986,6( 1 ) :35-40.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部