期刊文献+

定态多维量子流体动力学模型解的存在性 被引量:3

Existence of Steady-State Solutions of Quantum Hydrodynamic Model
下载PDF
导出
摘要 研究了热平衡态下多维空间的双极量子流体动力学模型.这个模型由二阶椭圆型方程组成,通过研究相应的截断系统,构造不动点算子,利用椭圆型方程的估计,并且由嵌入定理得到不动点算子的紧性,从而得到了解的存在性.在证明过程中,利用最大值原理和二阶椭圆方程的估计,得到解的先验估计,由Leray-Schauder不动点定理,得到了这个模型解的存在性. A thermal equilibrium of a bipolar quantum hydrodynamic model is analyzed on several dimensional space. This model is composed of elliptic equations. By studying its truncation system, constructing a fixed point operator and using elliptic estimates, the existence of solutions are obtained by applying the compactness of the fixed point operator according to embedding theorem. In the process of the proof, a priori estimate of solutions is acquired by applying the maximum principle and the estimates of elliptic equation. Finally, The existence of solutions of this model is given according to Leray-Schauder's fixed point theorem.
出处 《大连交通大学学报》 CAS 2008年第1期6-8,共3页 Journal of Dalian Jiaotong University
关键词 量子流体动力学 存在性 椭圆型方程 quantum hydrodynamics existence elliptic equation
  • 相关文献

参考文献3

  • 1BREZZI F,GASSER I,Markowich P A et al.Thermal equailibrium states of the quantum hydrodynamic model for semiconductors in one dimension[J].Appl.Math.Lett.,1995,(8):47-52.
  • 2JUNGELl A.A steady-state quantum Euler-Possion system for potential flows[J].Commun.Math.Phys.,1998,(194):463-479.
  • 3GILBARG,TRUDINGER N S.Elliptic Partial Different Equations of Second Order[M].New York:Springer-Verlag,1983.

同被引文献9

  • 1JuNGEL A, PINNAU'R. Global non-negative solutions of a nonlinear fourth-oder parabolic equation for quantum systems[ J ]. SIAM J. Math. Anal,2000,32:760-777.
  • 2JUNGEL A, TOSCANI G. Exponential decay in time of solutions to a nonlinear fourth-order parabolic equation [J]. Z. Angew Math. Phys. ,2003,54:377-386.
  • 3伍卓群,尹景学,王春朋.椭圆与抛物型方程引论[M].北京:科学出版社,2006:12-13.
  • 4BERNIS F, FRIEDAM A. Higher order nonlinear degen- erate parabolic equations [ J ]. J. Differential Equations, 1990,83 : 179-206.
  • 5BOUTAT M, HILOUT S, RAKOTOSON J E, et al. A gen- eralized thin-film equation in multidimensional space[ J]. Nonlinear Analysis, 2008,69 : 1268-1286.
  • 6LIANG B. Existence and asymptotic behavior of solutions to a thin film equation with Dirichlet boundary[J]. Non- linear Analysis ,2011 (12) : 1828-1840.
  • 7ANSINI L, GIACOMELLI L. Doubly nonlinear thin-film equations in one space dimension [ J ]. Arch. Ration. Mech. Anal. ,2004,173:89-131.
  • 8BERNIS F,FERREIRA R. Source-type solutions to thin- film equations:the critical case[J]. Appl. Math. Lett. , 1999 (12) :45-50.
  • 9MYERS T G. Thin films with high surface tension [ J ]. SIAM Rev, 1998,40:441-462.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部