期刊文献+

基于分布不完整数据选择性分类器 被引量:1

Distribution-Based Selective Classifiers for Incomplete Data
下载PDF
导出
摘要 通过删除数据集中的无关属性和冗余属性构建的选择性分类器可以有效地提高分类精度和效率.由于处理不完整数据的复杂性,已有的选择性分类器大都是针对完整数据的.然而,现实中的数据通常是不完整的并且包含许多冗余属性或无关属性.为解决这一问题,在构建的不完整数据分类器DBNB的基础上给出了一种有效的选择性分类器:SDBNB.在12个标准的不完整数据集上的实验结果显示,SDBNB的分类准确率比分类效果较好的选择性不完整数据分类器SNB和SRBC平均高出0.69%和0.58%,而其标准离差比SNB和SRBC平均低0.11和0.05.这表明SDBNB不仅有较高的分类准确率,而且分类效果更稳定. Selective classifiers are a kind of algorithms that can effectively improve the accuracy and efficiency of classification by deleting irrelevant or redundant attributes of a data set. Due to the complexity of processing incomplete data, however, most of them deal with complete data. Yet actual data are often incomplete and have many redundant or irrelevant attributes, a selective classifier for incomplete data (SDBNB), which is based on a newly constructed Bayes classifier (DBNB), is presented. Experiments results from twelve benchmark incomplete data sets show that the average accuracy of SDBNB is 0.69 percent and 0.58 percent higher than that of the effective selective classifiers: SNB and SRBC. Furthermore, its standard deviation is 0.11 and 0.05 lower than that of SNB and SRBC. This shows that not only SDBNB has higher accuracy, but also performs more stably as well.
出处 《北京交通大学学报》 EI CAS CSCD 北大核心 2008年第2期26-29,共4页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(6050301760673089)
关键词 数据分类 特征选择 贝叶斯方法 不完整数据 data classification feature selection Bayesian method incomplete data
  • 相关文献

参考文献10

  • 1Langley P, Sage S. Induction of Selective Bayesian Classitiers[C] .Proc. of the 10th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, 1994:399 - 406.
  • 2Singh M, Provan G M. Efficient Learning of Selective Bayesian Network Classifiers[C].Proc. of the 13th International Conference on Machine Learning. Morgan Kaufman, 1996.
  • 3Quinlan J R. C4.5:Programs for Machine Learning[ M]. San Francisco: Morgan Kaufmann, 1993.
  • 4Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifters[J]. Machine Learning, 1997,29(2 - 3) : 131 - 163.
  • 5Little R J A, Rubin D B. Statistical Analysis with Missing Data[ M]. New York:Wiley, 1987.
  • 6Ramoni M, Sebastiani P. Robust Bayes Classifiers[J]. Artificial Intelligence, 2001, 125(1 - 2) :209 - 226.
  • 7Winston P H. Artificial Intelligence[ M]. M A: Addison-Wesley, 1992.
  • 8陈景年,黄厚宽,田凤占,付树军.用于不完整数据的选择性贝叶斯分类器[J].计算机研究与发展,2007,44(8):1324-1330. 被引量:11
  • 9Blake C, Keogh, E Merz C J. UCI Repository of Machine Learning Databases [ EB/OL ] (1998) [ 2007 ]. Department of Information and Computer Sciences, University of California, Irvine, http: // www. ics. uci. edu/-mlearn/MLRepository. html.
  • 10Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques[ M]. 2ed. San Francisco: Morgan Kaufmann, 2005.

二级参考文献17

  • 1尚文倩,黄厚宽,刘玉玲,林永民,瞿有利,董红斌.文本分类中基于基尼指数的特征选择算法研究[J].计算机研究与发展,2006,43(10):1688-1694. 被引量:38
  • 2J R Quinlan.C4.5:Programs for Machine Learning[M].San Francisco:Morgan Kaufmann,1993.
  • 3R Kohavi,B Becker,D Sommerfield.Improving simple Bayes[C].In:M van Someren,G Widmer,eds.Poster Papers of the ECML-97.Prague:Charles University,1997.78-87.
  • 4N Friedman,D Geiger,M Goldszmidt.Bayesian network classifiers[J].Machine Learning,1997,29(2-3):131-163.
  • 5S L Lauritzen.The EM algorithm for graphical association models with missing data[J].Computational Statistics and Data Analysis,1995,19(2):191-201.
  • 6S Russell,J Binder,D Koller,et al.Local learning in probabilistic networks with hidden variables[C].In:Proc of IJCAI-95.San Francisco:Morgan Kaufmann,1995.1146-1151.
  • 7S Geman,D Geman.Stochastic relaxation,Gibbs distributions and the Bayesian restoration of images[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.
  • 8R J A Little,D B Rubin.Statistical Analysis with Missing Data[M].New York:Wiley,1987.
  • 9D J Spiegelhalter,R G Cowell.Learning in probabilistic expert systems[C].In:J Bernardo,J Berger,A P Dawid,eds.Bayesian Statistics 4.Oxford:Oxford University Press,1992.447-466.
  • 10M Ramoni,P Sebastiani.Robust Bayes classifiers[J].Artificial Intelligence,2001,125(1-2):209-226.

共引文献10

同被引文献10

  • 1Langley P, Sage S. Induction of Selective Bayesian Classitiers[ C]// Proc. of the 10th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, 1994:399 - 406.
  • 2Singh M, Provan G M. Efficient Learning of Selective Bayesian Network Classifiers[C]// Proe. of the 13th International Conference on Machine Learning. Morgan Kaufman, 1996:453 - 461.
  • 3Quinlan J R. C4.5: Programs for Machine Learning[ M]. San Francisco, CA: Morgan Kaufmann, 1993.
  • 4Kohavi R, Becker B, Sommerfield D. Improving Simple Bayes[C]// M. Van Someren, G. Widmer. Poster Papers of the ECML-97. Charles University, Prague, 1997: 78 - 87.
  • 5Friedman N, Geiger D, Goldszmid M T. Bayesian Network Classifiers[J]. Machine Learning, 1997, 29(2/3): 131 - 163.
  • 6Little R J A, Rubin D B. Statistical Analysis with Missing Data[ M]. New York:Wiley, 1987.
  • 7Spiegelhalter D J, Cowell R G. Learning in Probabilistic Expert Systems[C]//Bernardo J, Berger J, Dawid A P, Smith A F M, Bayesian Statistics 4. Oxford University Press, Oxford, UK, 1992:447-466.
  • 8Ramoni M, Sebastiani P. Robust Bayes Classifiers[J]. Artificial Intelligence, 2001, 125 (1/2) : 209 - 226.
  • 9Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques (Second Edition) [ M ]. Morgan Kaufmann, 2005.
  • 10Blake C, Keogh, E Merz C J. UCI Repository of Machine Learning Databases [ OB/OL ]. (1998). [ 2008 ]. Department of Information andComputer Sciences, University of California, Irvine, http://www. ics. uci. edu/ mlearn/M LRepository. html.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部