期刊文献+

有限多个集值映象公共不动点的修正的Mann迭代程序

On the modified mann iterative procedure for finding common fixed points of finitely many set-valued mappings
下载PDF
导出
摘要 研究用于寻求有限多个集值似Φ-伪压缩映象公共不动点的修正的Mann迭代程序.在似广义Lipschitzian条件下证明了分别在Hilbert空间与一致光滑Banach空间中由修正的Mann迭代程序生成的序列强收敛到这有限多个集值似Φ-伪压缩映象唯一的公共不动点. We study the modified Mann iterative procedure for finding common fixed points of finitely many set-valued Ф-pseudo- contractive-like mappings. It is shown that under the generalized-Lipschitzian-like condition the sequence generated by the modified Mann iterative procedure converges strongly to the unique common fixed point of these finitely many set-valued Ф -pseudocontractive-like mappings in a Hilbert space and in a uniformly smooth Banach space, respectively.
出处 《上海师范大学学报(自然科学版)》 2008年第2期131-136,共6页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金(10771141)
关键词 修正的Mann迭代程序 集值似Ф-伪压缩映象 公共不动点 似广义Lipschitzian条件 强收敛性 modified mann iterative procedure set-valued Ф -pseudocontractive-like mapping common fixed point generalizedlipschitzian-like condition strong convergence
  • 相关文献

参考文献3

二级参考文献13

  • 1曾六川.Lipschitz强增生算子方程解的Ishikawa迭代逼近[J].数学杂志,2004,24(5):524-530. 被引量:5
  • 2周海云.关于Ishikawa迭代的一点注记[J].科学通报,1997,42(2):126-128. 被引量:3
  • 3BROWDER F E.Nonlinear mappings of nonexpansive and accretive type inBanach spaces [J].Bull Amer Math Soc,1967,73:875-882.
  • 4KATO T.Nonlinear semigroups and evolution equations [J].J Math Soc Japan,1967,18/19:508-520.
  • 5LIU L S.Ishikawa and Mann iterative process with errors for nonlinearstrongly accretive mappings in Banach spaces [J].J Math Anal Appl,1995,194:114-125.
  • 6ZENG L C.Iterative construction of solutions to nonlinearequations of strongly accretive operators in Banach spaces [J].J Math Res & Exposition,1998,18(3):329-334.
  • 7XU Z B,ROACH G F.Characteristic inequalities in uniformly convex and uniformly smooth Banach spaces [J].J Math Anal Appl,1991,157:189-210.
  • 8XU H K.Inequalities in Banach spaces with applications [J].Nonlinear Analysis-TMA,1991,16:1127-1138.
  • 9ASPLUND E.Positivity of duality mappings [J].Bull Amer Math Soc,1967,73:200-203.
  • 10MORALES C.Pseudo-contractive mappings and Ieray-Schauder boundary condition [J].Comment Math Univ Carolina,1979,20:745-746.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部