期刊文献+

非局部逻辑方程解的数值分析 被引量:1

NUMERICAL ANALYSIS OF THE SOLUTION TO NONLOCAL LOGISTIC EQUATION
下载PDF
导出
摘要 个体数量动态发展的模型虽然是菲舍儿型的,但是它的个体之间相互竞争项是非局部的.采用数值方法来研究这一模型的平衡解及其相关性质.模型中的影响函数可以取作常数、方块函数以及高斯函数等等,本文考虑的是常数情况. In this paper, we consider a model for population dynamics which is of the Fisher type but where the competition interaction among individuals is nonlocal. We mainly apply the numerical method to study the equilibrium solutions of the model with some simple influence function such as constant function, square function, Gaussian function and some associated properties. We only consider the constant function in this paper.
出处 《哈尔滨师范大学自然科学学报》 CAS 2008年第2期27-30,共4页 Natural Science Journal of Harbin Normal University
关键词 非局部 影响函数 数值 平衡解 Nonlocal Influence function Numerical Equilibrium solution
  • 相关文献

参考文献4

  • 1V. M. Kenkre. Results from variants of the Fisher equation in the study of epidemics and bacteria. Proc. of Amer. Phys.Soc. , 2004,342:242 -248.
  • 2M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre. Nonlocal Interaction Effects on Pattern Formation in Population Dynamics. Prec. of Amer. Phys. Soc., 2003,91(15):1581041.
  • 3Junping Shi. The lecture on Reaction - Diffusion equations, chapter 4.
  • 4陆金甫,关治.偏微分方程数值解法.北京:清华大学出版社,2005.

同被引文献6

  • 1陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,2005.
  • 2A.L.Lin,B.Mann,G.Torres,B.Lincoln,J.Kas,and H.L.Swinney,Localization and Extinction of Bacterial Populations under Inhomogeneous Growth Conditions[J].Bio phys J., 87(2004),no. 1,75-80.
  • 3J.Wakita,K.Komatsu,A.Nakahara, T.Matsuyama,and M.Matsushita,Experimental Investigation on the Validity of Population ,ynamics Approach to Bacterial Colony Formation[J],L.Phys.Soc.Jpn. 63(1994), 1205-1211.
  • 4E.Ben-Jacob,I.Cohen,and H.Levine,Cooperative self-organization of microorganisms[J]. Adv.Phys,49(2000),395-554.
  • 5V.M.Kenkre,Results from variants of the Fisher equation in the study of epidemics and bacteria[J].Proc.of.Amer.Phys.Soc. 342(2004),242-248.
  • 6M.A.Fuentes,M.N.Kuperman,V.M.Kenkre,Nonlocal Interaction Effects on Pattern Formation in Population Dynamics[J].Phys Rev.Lett. 91 (2003),no. 15,158104/1-4.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部