期刊文献+

行程长度纹理特征在SPOT遥感图像分类中的应用 被引量:3

Application of Run-Length Texture Features to SPOT Remote Sensing Image Classification
原文传递
导出
摘要 将行程长度纹理特征与神经网络相结合应用于遥感图像分类中.在特征选择阶段采用类内、类间方差标准与 Rough 集相结合的方法挑选出有较强分类能力的特征并有效去除冗余特征.针对高分辨率、大尺度的 SPOT全色遥感卫星图像,分别基于行程长度纹理特征、共生矩阵纹理特征、灰度-梯度共生矩阵纹理特征和灰度-平滑共生矩阵纹理特征,采用 BP、RBF 两种类型的神经网络以及最近邻分类算法(K-NN 法)对其进行分类,并对分类结果进行对比.实验结果证明本文算法的有效性. Combined with neural network, a method for remote sensing image classification based on run-length features is proposed. According to the criterion of variances between and intra classes, the efficient features are selected and the redundant ones are excluded successfully by the method of rough set. Run- length features, co- occurrence features, gray level- gradient co- occurrence features and gray level-smoothed co-occurrence features are respectively used as inputs of three types of classifiers. BP net, RBF net and a nearest neighbor classifier--K-NN method, when applying remote sensing classification for large scale panchromatic SPOT images with high spatial resolution. The result demonstrates the efficiency of the proposed algorithm.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第2期260-265,共6页 Pattern Recognition and Artificial Intelligence
关键词 遥感图像分类 行程长度纹理特征 ROUGH集 神经网络 Remote Sensing Image Classification, Run-Length Texture Feature, Rough Set, Neural Network
  • 相关文献

参考文献10

  • 1周成虎,骆剑承.遥感影像地学理解与分析.北京:科学出版社,2003
  • 2Tang Xiaoou. Texture Information in Run-Length Matrices. IEEE Trans on Image Processing, 1998, 7(11): 1602-1609
  • 3Galloway M M. Texture Analysis Using Gray Level Lengths. Computer Graphics and Image Processing, 1975, 1(4) : 172-179
  • 4Chu A, Sehgal C M, Greenleaf J F. Use of Gray Value Distribution of Run Lengths for Texture Analysis. Pattern Recognition Letters, 1990, 11(6): 415-420
  • 5Dasarathy B R, Holder E B. Image Characterizations Based on Joint Gray-Level Run-Length Distributions. Pattern Recognition Letters, 1991, 12(8): 497-502
  • 6Pawlak Z. Rough Sets. International Journal of Information and Computer Science, 1982, 11(5): 145-172
  • 7Sun Lixin, Gao Wen. Method of Selecting the Best Classification Bands from Hyperspectral Images Based on Genetic Algorithm and Rough Set. Proc of SPIE, 1998, 3502:179-184
  • 8Atkinson P M, Tatnall A R L. Neural Network in Remote Sensing. Remote Sensing, 1997, 18(4): 699-709
  • 9余春艳,吴明晖,吴明.遥感图像识别中粗糙集理论与神经网络的结合[J].遥感学报,2004,8(4):331-338. 被引量:9
  • 10巫兆聪.基于粗糙理论的RBF网络及其遥感影像分类应用[J].测绘学报,2003,32(1):53-57. 被引量:14

二级参考文献7

  • 1ZENG Huang-lin. Rough Sets and Its Application[M]. Chongqing: Publishing House of Chongqing University, 1998. (in Chinese)
  • 2LUO Jian-cheng,ZHOU Cheng-hu. Radial Basis Function Map Theory Based Remote Sensing Image Classification Modal[ J]. Journal of Image and Graphics, 2000, 5A(2):94-99. (in Chinese)
  • 3YAN Ping-fan, ZHANG Chang-shui. Artificial Neural Network and Evolutionary Computation[ M]. Beijing:Tsinghua University Press, 2000. (in Chinese)
  • 4MITSUO G, CHENG Run-wei. Genetic Algorithms and Engineering Design[ M ]. Beijing: Science Press,2000. (in Chinese)
  • 5HUANG Xi-yue, LIU Han-dan, SHI Wei-ren. A Design of RBF Neural Networks Based on Genetic Algorithms[J]. Journal of Chongqing University (Natural Science Edition), 1998, 21 (2): 62-67. (in Chinese)
  • 6Min, Yao, Jianhua, Luo.Research on Generalized Computing Systems[J].Journal of Systems Engineering and Electronics,1998,9(3):39-43. 被引量:3
  • 7李永敏,朱善君,陈湘晖,韩曾晋,孙增圻.根据粗糙集理论进行BP网络设计的研究[J].系统工程理论与实践,1999,19(4):62-69. 被引量:30

共引文献25

同被引文献40

  • 1朱朝杰,王仁礼,董广军.基于小波变换的纹理特征变化检测方法研究[J].仪器仪表学报,2006,27(z1):46-47. 被引量:2
  • 2郭治,杜铭华,曲思建.焦炭反应性及反应后强度预测模型研究与分析[J].煤炭学报,2005,30(1):113-117. 被引量:13
  • 3孙辉.快速灰度投影算法及其在电子稳像中的应用[J].光学精密工程,2007,15(3):412-416. 被引量:26
  • 4Lin Qilang, Tang Haiyan, Li Chuanhui, et al. Carbonization behavior of coal-tar pitch modified with lignin/silica hybrid and optical texture of resultant semi-cokes [ J ]. Journal of Analytical and Applied Pyrolysis,2011,90 ( 1 ) : 1-6.
  • 5Wang Peizhen, Wang Qinfang. Fractal-based image analysis of coke optical texture[ A]. Proceeding on 2007 IEEE International Conference on Control and Automation[ C ]. 2007:3223-3225.
  • 6Vapnik V N. The nature of statistical learning theory[ C ]. 2nd Statistics for Engineering and Information Science[ A ]. New York:Springer,2000:314.
  • 7Jung C, Liu Q, Kim J. Accurate text localization in images based on SVM output scores [ J ]. Image and Vision Computing,2009,27 (9) : 1295-1301.
  • 8Xian G. An identification method of malignant and benign liver tumors from ultrasonography based on GLCM texture features and fuzzy SVM [ J ]. Expert Systems with Applications, 2010,37 ( 10 ) : 6737-6741.
  • 9Wang P, Zhou K, Zhou F, et al. Optical textures classification of coke microscopic image based on SVM [ A ]. 2010 International Conference on Computer Application and System Modeling [ C ]. 2010:596-600.
  • 10Zhang J, Tan T. Brief review of invariant texture analysis methods [ J ]. Pattern Recognition ,2002,35 (3) :735-747.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部