期刊文献+

大气中臭氧含量分析预测的支向量机模型 被引量:2

SVM Forecasting Modeling Based on the Ozone Concentration in Air
原文传递
导出
摘要 以俄亥俄州(O h io)的气象、臭氧监测数据为基础,对一个监测点数据进行了分析处理,运用支持向量机回归方法,对气象指标的多参数样本进行学习,获得精确的支持向量机映射关系,并对臭氧含量进行预测.预测结果的误差较小,符合实际情况,能够较好的解决实际问题,说明支持向量机回归在预测上具有小的结构风险与强的泛化能力. We analyzed and processed the data with the support vector machine method basing on monitoring of the ozone and the meteorology in Ohio, and we acquired the accurate vector machine mapping relation, and also forecast the ozone content correspondingly in the coming years. The error of the forecast result is very small, that was coincident with the actual facts. So SVM is effective method to resolve some actual problem and has small configuration risk and strong abroad ability.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第9期52-56,共5页 Mathematics in Practice and Theory
关键词 支持向量机 臭氧含量 分析预测模型 support vector machine forecast modeling ozone concentration
  • 相关文献

参考文献6

  • 1吾今培,孙德山.现代数据分析[M].北京:机械工业出版社,2006.
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2279
  • 3林剑艺,程春田.支持向量机在中长期径流预报中的应用[J].水利学报,2006,37(6):681-686. 被引量:115
  • 4John Shawe-Taylor, Neflo Cristianini. Support Vector Machines and Other Kernel-based Learning Methods[M3. Cambridge University Press,2000.
  • 5Steve R Gunn. Support Vector Machines for Classification and Regression[M]. University of Southampton,1997.
  • 6Steve Gunn. Matlab Support Vector Machine Toolbox[CP/DK]. http://www. isis. ecs. soton.ac. uk/isystems/ kernel/, 2001-10-12.

二级参考文献22

  • 1刘隽,周涛,周佩玲.GA优化支持向量机用于混沌时间序列预测[J].中国科学技术大学学报,2005,35(2):258-263. 被引量:21
  • 2Box G E P,Jenkins G M.Time Series Analysis Forecasting and Control[M].San Francisco:Holden-Day,1976.
  • 3ASCE Task Committee.Artificial neural networks in hydrology-Ⅰ:Preliminary concepts[J].Journal of Hydrologic Engineering,2000,5(2):115-123.
  • 4ASCE Task Committee.Artificial neural networks in hydrology-Ⅱ:Hydrological applications[J].Journal of Hydrologic Engineering,2000,5(2):124-137.
  • 5Liong S Y,Sivapragasm C.Flood stage forecasting with SVM[J].Journal of the American Water Resources Association,2002,38(1):173-186.
  • 6Vapnik V.Statistical Learning Theory[M].New York:Springer,1998.
  • 7Smola A J,Schoelkopf B.A tutorial on support vector regression[J].Statistics and Computing,2004,14:199-222.
  • 8Platt J.Fast training of support vector machines using sequential minimal optimization[A].Advances in Kernel MethodsSupport Vector Learning[C].Cambridge:MIT Press,1999.185-208.
  • 9Hsu C W,Chang C C,Lin C J.A Practical Guide to Support Vector Classification[R].Technical report,Department of Computer Science and Information Engineering,National Taiwan University,2003.
  • 10Dong B,Cao C,Lee S E.Applying support vector machines to predict building energy consumption in tropical region[J].Energy and Buildings,2005,37:545-553.

共引文献2390

同被引文献47

引证文献2

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部