摘要
研究一类具Beddington-DeAngeli类功能性反应和投放率的Lotka-Volterra非自治的捕食-食饵系统,证明了此系统在一定条件下是一致持续生存的,通过构造适当的Lyapunov函数得到系统存在唯一全局渐进稳定正周期解的充分条件.并举例说明条件的可行性.
We consider a nonautonomous predator-prey system with Beddington-DeAngelis fuctional responses and invest rate. It is proved that the system is uniform persistent under suitable condition, Furthermore, A sufficient condi-tions are established for existence of periodic solution and uniqueness of global asymptotic stability by establishing Lyapunov fuction and a example is given to illustrate the feasibility of these conditions.
出处
《数学的实践与认识》
CSCD
北大核心
2008年第9期123-130,共8页
Mathematics in Practice and Theory
基金
国家自然科学基金(10471020)
教育部新世纪优秀人才资助项目(NCET05-0319)
黑龙江省教育厅科技项目(11531458)