期刊文献+

均匀准保角球面参数化 被引量:3

Uniform Quasi-Conformal Spherical Parameterization
下载PDF
导出
摘要 针对闭的或者单边界亏格为0的三角网格,提出一种球面参数化方法.通过立体投影将现有的平面参数化方法推广到球面上,得到一个初始的球面参数化;为了减小变形,引入质心坐标进行全局优化;最后用Moebius变换均匀化最终的球面网格.该方法能够避免立体投影出现三角形折叠的情况,保证最后的映射是双射.通过大量典型的三维模型实验和比较可以看出:文中的参数化方法变形小,在复杂网格的纹理映射中的均匀化效果较现有的保角、保面积变换有明显的改善. This paper presents a novel spherical parameterization method for closed genus-zero triangular mesh or single boundary genus-zero triangular mesh. An initial spherical parameterization is firstly constructed by lifting planar parameterization to the sphere through the stereographic projection. Then we introduce an efficient approach based on bary centric coordinate to improve the initial spherical parameterization. At last, a uniform spherical parameterization is generated by a Moebius transformation. Our method can avoid fold-overs by the stereographic projection and always yields bijective mappings. Experiments and comparisons are taken with representative 3D meshes, which reveals that our approach has low distortion, and it has also obvious improvement in uniform texture mapping for complicated meshes than available conformal mapping methods and authalic mapping methods.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第5期618-624,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60673006) IDeA Network of Biomedical Research Excellence (INBRE) grant (5P20RR01647206) from NIH,USA
关键词 三角网格 球面参数化 纹理映射 MOEBIUS变换 triangular mesh spherical parameterization texture mapping Moebius transformation
  • 相关文献

参考文献24

  • 1Sheffer A, Praun E, Rose K. Mesh parameterization methods and their applications[J]. Computer Graphics and Vision, 2006, 2(2): 105-171
  • 2Floater M S, Hormann K. Surface parameterization: a trutorial and survey [M] // Dodgson N. A, Floater M. S, and Sabin M. A, Advances in Multiresolution for Geometric Modelling. Heidelberg: Springer-Verlag, 2005:157-186
  • 3Alexa M. Merging polyhedral shapes with scattered features[J]. The Visual Computer, 2000, 16(1): 26-37
  • 4Kobbelt L P, Vorsatz J, Labsik U, et al. A shrink wrapping approach to remeshing polygonal surfaces[J]. Computer Graphics Forum, 1999, 18(3), 119-129
  • 5Gu X, Wang Y, Chan T F, et al. Genus zero surface conformal mapping and its application to brain surface mapping[J]. IEEE Transactions on Medical Imaging, 2004, 23(8) :949-958
  • 6Gotsman C, Gu X, Sheffer A. Fundamentals of spherical parameterization for 3D meshes [C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, San Diego, 2003:358-364
  • 7Saba S, Yavneh I, Gotsman C, et al. Practical spherical embedding of manifold triangle meshes [C]//Proceedings of the International Conference on Shape Modeling and Applications, Boston, 2005:258-267
  • 8LI Ying,YANG Zhou-wang,DENG Jian-song.Spherical parametrization of genus-zero meshes by minimizing discrete harmonic energy[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(9):1589-1595. 被引量:2
  • 9严寒冰,胡事民.球面坐标下的凸组合球面参数化[J].计算机学报,2005,28(6):927-932. 被引量:7
  • 10胡国飞,方兴,彭群生.凸组合球面参数化[J].计算机辅助设计与图形学学报,2004,16(5):632-637. 被引量:13

二级参考文献48

  • 1胡国飞,方兴,彭群生.凸组合球面参数化[J].计算机辅助设计与图形学学报,2004,16(5):632-637. 被引量:13
  • 2[1]Kobbelt L, Taubin G. Geometric signal processing on large polyhedral meshes. In: SIGGRAPH'2001 Course Notes, Course 17, Los Angeles, California, 2001
  • 3[2]Sweldens W, Schroder P. Digital geometric signal processing.In:SIGGRAPH'2001 Course Notes, Course 50, Los Angeles, California, 2001
  • 4[3]Wei L Y, Levoy M. Texture synthesis over arbitrary manifold surfaces. In: Proc SIGGRAPH'2001, Los Angeles, California, 2001.355-360
  • 5[4]Pauly M, Gross M. Spectral processing of point-sampled geometry. In: Proc SIGGRAPH'2001, Los Angeles, California, 2001. 379-386
  • 6[5]Schroder P, Sweldens W. Spherical wavelets: Efficiently representing functions on the sphere. In:Proc SIGGRAPH'95, Los Angeles, California, 1995.161-172
  • 7[6]Taubin G. A signal processing approach to fair surface design. In:Proc SIGGRAPH'95, Los Angeles, California, 1995. 351-358
  • 8[7]Karni Z, Gotsman C. Spectral compression of mesh geometry. In:Proc SIGGRAPH'2000, New Orleans, Louisana, 2000. 279-286
  • 9[8]Kobbelt L, Campagna S, Vosatz J et al. Interactive multiresolution modeling on arbitrary meshes. In: Proc SIGGRAPH'98, Orlando, Florida, 1998. 105-114
  • 10[9]Guskov I, Sweldens W, Schroder P. Multiresolution signal processing for meshes. In: Proc SIGGRAPH'99, Los Angeles, California,1999. 325-334

共引文献28

同被引文献19

  • 1胡国飞,方兴,彭群生.凸组合球面参数化[J].计算机辅助设计与图形学学报,2004,16(5):632-637. 被引量:13
  • 2LI Ying,YANG Zhou-wang,DENG Jian-song.Spherical parametrization of genus-zero meshes by minimizing discrete harmonic energy[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(9):1589-1595. 被引量:2
  • 3聂博文,马宏绪,王剑,王建文.微小型四旋翼飞行器的研究现状与关键技术[J].电光与控制,2007,14(6):113-117. 被引量:199
  • 4Alexa M. Recent advances in mesh morphing [ J ]. Com- puter Graphics Forum, 2002,21 (2) :173-196.
  • 5Alexa M. Merging polyhedral shapes with scattered features [ C]//Proceedings of the 1999 IEEE International Confer- ence on Shape Modeling and Applications. 1999:202-210.
  • 6Shapiro A, Tal A. Polyhedron realization for shape trans- formation[ J]. The Visual Computer, 1998,14(8-9 ) :429- 444.
  • 7Gotsman C, Gu Xianfeng, Sheffer A. Fundamentals of spherical parameterization for 3D meshes[ J]. ACM Trans- actions on Graphics (TOG), 2003,22 (3) :358-363.
  • 8Gu Xianfeng, Wang Yalin, Chan Tony F, et al. Genus ze- ro surface conformal mapping and its application to brain surface mapping[ J]. IEEE Transactions on Medical Ima- ging, 2004,23(8) :949-958.
  • 9Saba S, Yavneh I, Gotsman C, et al. Practical spherical embedding of manifold triangle meshes [ C ]// Proceedings of the 2005 IEEE International Conference on Shape Mod- eling and Applications. 2005:256-265.
  • 10Floater M S. Mean value coordinates [ J ]. Computer Aided Geometric Design, 2003,20( 1 ) : 19-27.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部