期刊文献+

一类非线性系统的自适应模型控制 被引量:5

Adaptive fuzzy Control for a Class of Nonlinear Systems
下载PDF
导出
摘要 对一类非线性不确定连续系统,提出了一种新的自适应控制方法。此方法用T-S模糊系统对未知函数进行逼近,引入H^∞控制减弱外部干扰及逼近误差对输出跟踪误差的影响,证明了该方法可保证闭环系统稳定。仿真结果验证了此算法的有效性。 A new adaptive fuzzy control method is presented for a class of continuous uncertainty systems. In this method, T - S fuzzy logic systems are employed to approximate unknown functions in the sytems, H∞ control is used to attenuate the effect on the tracking error caused by fuzzy logic approximation errors and external disturbance. It is proved that this control algorithm can guarantee the stability of the closed - loop system. The simulation example is given finally to illustrate the performance of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 1997年第6期660-666,共7页 Control and Decision
基金 国家自然科学基金 辽宁省自然科学基金项目资助
关键词 H^∞控制 自适应模型控制 非线性系统 fuzzy control, fuzy logic approximations, H∞control
  • 相关文献

参考文献4

  • 1Chen B S,Int J Control,1994年,59卷,4期,439页
  • 2Chen B S,Int J Control,1994年,59卷,7期,439页
  • 3Wang Lixin,IEEE Trans Fuzzy Syst,1993年,1卷,2期,146页
  • 4Wang Lixin,Proc IEEE Int Conf Fuzzy Systems,1992年

同被引文献24

  • 1欧阳军,闫桂荣,王腾.LS-SVM在随机振动在线自适应逆控制中的应用[J].应用力学学报,2007,24(4):530-534. 被引量:5
  • 2王永富,柴天佑,佟绍成.一类非线性不确定系统的鲁棒自适应模糊跟踪控制[J].模糊系统与数学,2004,18(4):92-98. 被引量:5
  • 3柳晓菁,易建强,赵冬斌,王伟.基于最小二乘支持向量机的自适应逆扰动消除控制系统[J].控制与决策,2005,20(8):947-950. 被引量:13
  • 4Wang L X.Stable adaptive fuzzy control of nonlinear systems[J].IEEE Transactions on Fuzzy Systems,1993,1(2):146-155.
  • 5Wang L X.Stable adaptive fuzzy controller with application to inverted tracking[J].IEEE Transaction on Systems,Man,and Cybernetics-Part B:Cybernetics,1996,26(5):677-691.
  • 6Chen B S,Lee C H,Chang Y C.Tracking design of nonlinear SISO systems:adaptive fuzzy approach[J].IEEE Transactions on Fuzzy Systems,1996.4(1):32-43.
  • 7Tong S C,Wang T,Tang J T.Fuzzy adaptive output tracking control of nonlinear systems[J].Fuzzy Sets and Systems,2000,111:169-182.
  • 8Tong S C,Li H X.Direct adaptive fuzzy output tracking control of nonlinear systems[J].Fuzzy Sets and Systems,2002,128(1):107-115.
  • 9VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 10CHALIMOURDA A, SCHOLKOPF B, SMOLA A J. Experimen- tally optimal u in support vector regression for different noise models and parameters settings[J]. Neural Networks, 2004, 17(1 ): 127 - 141.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部