期刊文献+

小波包结点阈值自适应消噪法 被引量:2

Noisy signal decomposition based on wavelet packet
下载PDF
导出
摘要 当噪声为时变的时候,传统的小波阈值消噪方法效果很有限:当采用软阈值消噪时,总体效果较好,但当含噪信号很不规则时显得过于光滑;当采用硬阈值消噪时,消噪效果不理想,信号含有明显的噪声。为克服上述缺陷,本文提出基于"自适应阈值消噪思想"的小波包结点阈值消噪法。首先,我们给出了小波包结点阈值的定义,这种阈值取法突破了高斯白噪声和平稳噪声的局限性;其次,我们提出了基于谱熵的噪声估计法用以替代传统的中值绝对值(MAD)噪声估计法,这种噪声估计方法与实际应用环境相符,适用于非平稳噪声和有色噪声。仿真实验证实,相比于常规小波消噪算法,结点阈值法和基于谱熵的噪声估计法在白噪声环境下具有较好的消噪效果。 The conventional wavelet thresholding methods based denoising algorithm are limited when the noise is non- stationary. Using the soft thresholding method , the denoised signal is too smooth to use when the noisy signal is very irregular. Using the hard thresholding method, the denoised signal still contains a lot of noise. So a new algorithm is proposed for denoising, adaptive wavelet packet is used for noisy signal decomposition. Node dependent thresholding is proposed and a method based on spectral entropy is applied to estimate the node noise. First, we propose node dependent thresholding for adaptation in non-stationary or colored noise. Next, we suggest a noise estimation method based on spectral entropy using histogram of intensity instead of estimation method based on median absolute deviation (MAD). This algorithm is valid on white noise condition for comparison with the conventional wavelet thresholding methods.
作者 陈建 任章
出处 《电子测量技术》 2008年第4期1-4,共4页 Electronic Measurement Technology
基金 国家自然科学基金资助项目(10377004)
关键词 自适应阈值消噪思想 小波包结点阈值 谱熵 噪声估计 adaptive wavelet thresholding domain method node dependent thresholding spectral entropy estimatethe node noise
  • 相关文献

参考文献5

  • 1DONOHO D L. Denosing by soft-thresholding[J]. IEEE Trans on Information Theory, 1995,41(3) : 613- 627.
  • 2JOHNSTONE I M, SLIVERMAN B W. Wavelet threshold estimators for data with correlated noise [J]. J. Roy. Statist. Soc. B,1997,59:319-351.
  • 3GUO D F, ZHU W H, GAO Z M, et al. A study of wavelet thresolding denoising[A]. Signal Processing Proceedings, 2000. WCCC-ICSP2000. 5thInternational Conference ,2000(1) :329-332.
  • 4STEPIN J, ZIELINSKI T, RUMIAN R. Image denoising using scale-adaptive lifting schemes [A]. Conference on Image Processing, 2000, 3: 288-291.
  • 5MALLAT S, HWANG W L. Singularity detection and processing with wavelets [J]. IEEE Trans on Information Theory, 1992, 38(2) :617-643.

同被引文献14

  • 1S. Grace Chang, Bin Yu, Martin Vetterli. Adaptive wavelet thresholding for image denois-ing and compression[J]. IEEE Trans. On Image Processing, September,2000, 9(9) :1532 - 1546.
  • 2Gaeid K S, Hew W P. Wavelet Fault Diagnosis and Toler- ant of Induction Motor[J]. International Journal of the Phys- ical Sciences, 2011,6(3) : 358-376.
  • 3Abdesh M, Khan S K, Azizur R M. A New Wavelet Based Diagnosis and Protection of Faults in Induction Motor Drives[C]//. Proceeding of Power Electronics. Specialists Conference. 2008.
  • 4Gang N, Achmad W, Jong D S, et al. Decision-Level Fu- sion Based on Wavelet Decomposition for Induction Motor Fault Diagnosis Using Transient Current Signal[J]. Expert System Application, 2008,35 : 918-928.
  • 5Chan F K, Fu A W, Yu C. Haar Wavelets for Efficient Sim- ilarity Search of Time-Series: With and without Time Warping[J]. IEEE Transactions On Knowledge and Data Engineering, 2003,15(3) : 686-705.
  • 6Keogh E, Pazzani M. Derivative Dynamic Time Warping [C]//. KUMAR V, Grossman R. Proceedings of the First SI- AM International Conference on Data Mining (SDM' 2001). Philadelphia, 2001.
  • 7齐子元,米东,徐章隧.小波多分辨分析的频带阈值去噪方法[J].噪声与振动控制,2008,28(2):130-131. 被引量:3
  • 8焦竹青,熊伟丽,张林,徐保国.基于接近度的多传感器数据融合方法研究[J].压电与声光,2009,31(5):771-774. 被引量:13
  • 9董九英.多传感器数据融合的主成分方法研究[J].计算机工程与应用,2009,45(33):111-113. 被引量:11
  • 10韩峰,朱镭,智小军.基于模糊理论的多传感器数据融合测量[J].应用光学,2009,30(6):988-991. 被引量:19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部