期刊文献+

二进制编码差异演化算法在Agent联盟形成中的应用 被引量:7

A Binary-Encoding Differential Evolution Algorithm for Agent Coalition
下载PDF
导出
摘要 在多Agent系统中,通过形成联盟可以提高Agent求解问题的能力,因此,联盟是多Agent系统的重要合作方法.从本质上讲,Agent联盟的形成是一个复杂的组合优化问题.引入差异演化算法来解决这一问题.差异演化是一种基于群体差异的演化算法,适合于求解连续空间的最优化问题.首次将以实数编码的差异演化算法应用于Agent联盟问题,提出二进制编码的差异演化算法解决组合优化问题,通过引入S型函数把变异操作的结果限制在集合{0,1}上,可以快速、高效地找出合适的Agent联盟.与遗传算法和蚁群算法的对比实验表明,该算法是正确、有效、可行的,在运行时间和解的性能上都优于相关算法. In multi-agent systems, it can improve agent's abilities of problem solving to form coalition. So, coalition is an important cooperative method in multi-agent systems. But the number of the possible coalitions is exponential since each agent can form coalition with others. Essentially, forming agent coalition is a combinatorial optimization problem. As a modern optimization method, differential evolution (DE) introduced by Storn and Price in 1997 is one of the most successful evolutionary algorithms which are adopted to solve this problem. The original differential evolution which is based on the individual differential reconstruction idea is designed for the global continuous optimization problem. In order to solve the combinatorial optimization problem by DE, in this paper, a novel binary-encoding differential evolution (BDE) algorithm is presented and applied to find out agent coalition fast and efficiently. By using a Sigmoid function, the new algorithm constrains the result of mutation operator in { 0,1 }, so as to adopt the combinatorial optimization problem. Some simulations which include 30 agents have been achieved for the novel binary-encoding differential evolution, genetic algorithm (GA) and ant colony algorithm (ACA). The experimental results show that the new algorithm is feasible and efficient. It is superior to other related methods such as GA and ACA both on the quality of solution and on the convergence rate.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第5期848-852,共5页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60443003) 北京交通大学科技基金项目(2003SZ003)~~
关键词 多AGENT系统 联盟 二进制编码 差异演化算法 组合优化 multi-agent system coalition binary-encoding differential evolution algorithm combinatorial optimization
  • 相关文献

参考文献15

二级参考文献48

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2刘惊雷,童向荣,张伟.一种快速构建最优联盟结构的方法[J].计算机工程与应用,2006,42(4):35-37. 被引量:11
  • 3[1]Sandholm, T.W., Larson, K., Andersson, M,R, et al. Anytime coalition structure generation with worst case guarantees. In: Proceedings of the 15th National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 1998. 46~54.
  • 4[2]Kahan, J.P., Rapoport, A. Theories of Coalition Formation. Hillsdale NJ: Lawrence Erlbaum Associates Publishers, 1984.
  • 5[3]Shehory, O., Kraus, S. Task allocation via coalition formation among autonomous agents. In: Mellish, C.S. ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1995. 655~661.
  • 6[4]Shehory, O., Kraus, S. A kernel-oriented model for coalition formation in general environments: implementation and results. In: Proceedings of the 13th National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 1996. 134~140.
  • 7[5]Zlotkin, G., Rosenschein, J.S. Coalition, cryptography and stability: mechanisms for coalition formation in task oriented domains. In: Proceedings of the 12th National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 1994. 432~437.
  • 8[6]Ketchpel, S. Forming coalitions in the face of uncertain rewards. In: Proceedings of the 12th National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 1994. 414~419.
  • 9[7]Sandholm, T.W., Lesser, V.R. Coalitions among computationally bounded agents. Artificial Intelligence, 1997,94(1):99~137.
  • 10[8]Shehory, O., Kraus, S. Methods for task allocation via agent coalition formation. Artificial Intelligence, 1998,101(1-2):165~200.

共引文献128

同被引文献80

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部