期刊文献+

基于两阶段分类的口语理解方法 被引量:3

A Spoken Language Understanding Approach Based on Two-Stage Classification
下载PDF
导出
摘要 口语理解是实现口语对话系统的关键技术之一.它主要面临两方面的挑战:1)稳健性,因为输入语句往往是病态的;2)可移植性,即口语理解单元应能够快速移植到新的领域和语言.提出了一种新的基于两阶段分类的口语理解方法:第1阶段为主题分类,用来识别用户输入语句的主题;第2阶段为主题相关的语义槽分类,根据识别的主题抽取相应的语义槽/值对.该方法能对用户输入语句进行深层理解,同时也能保持稳健性.它基本上是数据驱动的,而且训练数据的标记也比较容易,可方便地移植到新的领域和语言.实验分别在汉语交通查询领域和英语DARPA Communicator领域进行,结果表明了该方法的有效性. Spoken language understanding (SLU) is one of the key components in a spoken dialogue system. One challenge for SLU is robustness since the speech recognizer inevitably makes errors and spoken language is plagued with a large set of spontaneous speech phenomena. Another challenge is portability. Traditionally, the rule-based SLU approaches require linguistic experts to handcraft the domain-specific grammar for parsing, which is time-consuming and laboursome. A new SLU approach based on two-stage classification is proposed. Firstly, the topic classifier is used to identify the topic of an input utterance. Then, with the restriction of the recognized target topic, the semantic slot classifiers are trained to extract the corresponding slot-value pairs. The advantage of the proposed approach is that it is mainly data-driven and requires only minimally annotated corpus for training whilst retaining the understanding robustness and deepness for spoken language. Experiments have been conducted in the Chinese public transportation information inquiry domain and the English DARPA Communicator domain. The good performance demonstrates the viability of the proposed approach.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第5期861-868,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60496326) 国家"八六三"高技术研究发展计划基金项目(2001AA114210-11)~~
关键词 口语对话系统 口语理解 统计分类器 主题分类 决策表 spoken dialogue system spoken language understanding statistical classifier topic classification decision list
  • 相关文献

参考文献18

  • 1W ward,S Issar.Recent improvements in the CMU spoken language understanding system[C].In:Proc of ARPA Workshop on Human Language Technology.San Francisco:Morgan Kaufmann Publishers,1994.213-216
  • 2S Seneff.TINA:A natural language system for spoken language applications[J].Computational Linguistics,1992,18(1):61-86
  • 3R Pieraccini,E Levin.Stochastic representation of semantic structure for speech understanding[C].The 2nd European Conf on Speech Communication and Technology(EUROSPEECH),Genova,Italy,1991
  • 4S Miller,R Bobrow,R Ingria,et al.Hidden understanding models of natural language[C].The 32th Annual Meeting of the Association for Computational Linguistics(ACL),Las Cruces,USA,1994
  • 5Y Wang,A Acero.Grammar learning for spoken language understanding[C].The 7th IEEE Workshop on Automatic Speech Recognition and Understanding(ASRU),Madonna di Campiglio,Italy,2001
  • 6Y Wang,A Acero.Evaluation of spoken language grammar learning in the ATIS domain[C].The 27th IEEE Int'l Conf on Acoustics,Speech and Signal Processing(ICASSP),Orlando,Florida,2002
  • 7Y He,S Young.Semantic processing using the hidden vector state model[J].Computer Speech and Language,2005,19(1):85-106
  • 8Y He,S Young.A data-driven spoken language understanding system[C].The 8th IEEE Workshop on Automatic Speech Recognition and Understanding(ASRU),Virgin Islands,US 2003
  • 9Y Wang,A Acero,C.Chelba,et al.Combination of statistical and rule-based approaches for spoken language understanding[C].The 7th Int'l Conf on Spoken Language Processing(ICSLP),Denver,Colorado,2002
  • 10C Wutiwiwatchai,S Furui.Combination of finite state automata and neural network for spoken language understanding[C].The 8th European Conf on Speech Communication and Technology(EUROSPEECH),Geneva,Switzerland,2003

共引文献1

同被引文献29

  • 1王细薇,樊兴华,赵军.一种基于特征扩展的中文短文本分类方法[J].计算机应用,2009,29(3):843-845. 被引量:36
  • 2姜晓伟,王建民,丁贵广.基于主题模型的微博重要话题发现与排序方法[J].计算机研究与发展,2013,50(S1):179-185. 被引量:12
  • 3陈俊燕,吴及,王侠,王作英.口语对话系统中的一种稳健语言理解算法[J].清华大学学报(自然科学版),2005,45(1):21-24. 被引量:2
  • 4余正涛,樊孝忠,郭剑毅,耿增民.基于潜在语义分析的汉语问答系统答案提取[J].计算机学报,2006,29(10):1889-1893. 被引量:44
  • 5Wang Y Y, Yu D, Ju Y C, et al. An introduction to voice search[J]. Signal Processing Magazine, IEEE, 2008, 25(3): 28-38.
  • 6Minker W, Bennacef S, Gauvain J. A stochastic case flame approach for natural language understanding [C]//Spoken Language, 1996. ICSLP 96. Proceedings., Fourth International Conference on. IEEE, 1996, 2: 1013-1016.
  • 7Deng Y, Xu B, Huang T.Chinese spoken language understanding across domain[C].Sixth International Conference on Spoken Language Processing. 2000, 1:230- 234.
  • 8Lafferty J,McCallum A,Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]//Proc of the 18th Int Conf on Machine Learning. San Francisco. CA: Morgan Kaufmann, 2001:282-289.
  • 9Nocedal J, Wright S J. Numerical Optimization[M]. Springer,1999.
  • 10Wu W L,Lu RZ,Duan J Y,et al.A weakly supervised learning approach for spoken language understanding[C].Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing.Association for Computational Linguistics,2006:199-207.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部