摘要
Quantum key distribution (QKD) system must be robust enough in practical communication. Besides birefringence of fiber, system performance is notably affected by phase drift. The Faraday-Michelson QKD system can auto-compensate the birefringence of fiber, but phase shift is still a serious problem in its practical operation. In this paper, the major reason of phase drift and its effect on Faraday- Michel- son QKD system is analyzed and an effective active phase compensation scheme is proposed. By this means, we demonstrate a quantum key distribution system which can stably run over 37-km fiber in practical working condition with the long-time averaged quantum bit error rate of 1.59% and the stan- dard derivation of 0.46%. This result shows that the active phase compensation scheme is suitable to be used in practical QKD systems based on double asymmetric interferometers without additional de- vices and thermal controller.
Quantum key distribution (QKD) system must be robust enough in practical communication. Besides birefringence of fiber, system performance is notably affected by phase drift. The Faraday-Michelson QKD system can auto-compensate the birefringence of fiber, but phase shift is still a serious problem in its practical operation. In this paper, the major reason of phase drift and its effect on Faraday- Michelson QKD system is analyzed and an effective active phase compensation scheme is proposed. By this means, we demonstrate a quantum key distribution system which can stably run over 37-km fiber in practical working condition with the long-time averaged quantum bit error rate of 1.59% and the standard derivation of 0.46%. This result shows that the active phase compensation scheme is suitable to be used in practical QKD systems based on double asymmetric interferometers without additional devices and thermal controller.
基金
Supported by the National Fundamental Research Program of China (Grant No. 2006CB921900)
National Natural Science Foundation of China (Grant Nos. 60537020 and 60621064)
Knowledge Innovation Project of Chinese Academy of Sciences
关键词
量子键分布
法拉第-迈克逊系统
相位转移
相位补偿
quantum key distribution, Faraday-Michelson system, phase drift, active phase compensation