摘要
A new asymmetric sulfonium-based ionic liquid, 1-butyldimethylsulfonium bis(trifluoromethylsulfonyl) imide (S114TFSI), was developed as electrolyte material for lithium secondary battery. Its cathodic po- tential was a little more positive against the Li/Li+, so vinylene carbonate (VC) was added into the LiTFSI/S114TFSI ionic liquid electrolyte to ensure the formation of a solid electrolyte interface (SEI), which effectively prevented the decomposition of the electrolyte. The properties of the Li/LiMn2O4 cell containing S114TFSI-based electrolyte were studied and the cycle performances were compared to those with a conventional organic electrolyte (1 mol/L LiPF6/DMC:EC=1:1(w/w)) at room temperature. Electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) were conducted to analyze the mechanisms affecting the cell performances at different temperatures. The lithium secondary bat- tery system, using the above ionic liquid electrolyte material, shows good cycle performances and good safety at room temperature, and is worthwhile to further investigate so as to find out the potential application.
A new asymmetric sulfonium-based ionic liquid, 1-butyldimethylsulfonium bis(trifluoromethylsulfonyl) imide (S114TFSI), was developed as electrolyte material for lithium secondary battery. Its cathodic potential was a little more positive against the Li/Li+, so vinylene carbonate (VC) was added into the LiTFSI/S114TFSI ionic liquid electrolyte to ensure the formation of a solid electrolyte interface (SEI), which effectively prevented the decomposition of the electrolyte. The properties of the Li/LiMn2O4 cell containing S114TFSI-based electrolyte were studied and the cycle performances were compared to those with a conventional organic electrolyte (1 mol/L LiPF6/DMC:EC=1:1(w/w)) at room temperature. Electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) were conducted to analyze the mechanisms affecting the cell performances at different temperatures. The lithium secondary bat- tery system, using the above ionic liquid electrolyte material, shows good cycle performances and good safety at room temperature, and is worthwhile to further investigate so as to find out the potential application.
基金
Supported by by the National Key Project of China for Basic Research (Grant No. 2006CB202600)
the National High Technology Research and Development Program of China (Grant No. 2007AA03Z222)
the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, and Hitachi Chemical Co, Ltd
关键词
离子液体
锂电池
循环利用
安全性
asymmetric sulfonium-based ionic liquid, lithium secondary battery, cycle performances, safety