期刊文献+

自蔓延准热等静压技术制备Ti_3AlC_2可加工陶瓷的压缩性能

Compressive Properties of Ti_3AlC_2 Ceramics Prepared by SHS/PHIP
下载PDF
导出
摘要 研究了用自蔓延准热等静压技术制备出的Ti_3AlC_2可加工陶瓷的压缩性能。应变速率为1×10^(-3)/s的实验结果表明:室温(RT)~800℃的压缩断裂方式为脆性断裂,但Ti_3AlC_2陶瓷在RT便已具有显微塑性特征;800~1300℃的压缩行为逐渐表现出塑性特征,且温度越高塑性特征越明显。韧脆转变温度区间(800~1000℃)以上的应力与应变曲线存在着"加工硬化"区域,并且随着温度的升高塑性区域要大于"硬化区"。主裂纹的偏转与分岔、晶粒的分层与扭折是Ti_3AlC_2陶瓷的主要压缩变形机制,而它的塑性变形特征则是位错运动的结果。 The compressive properties of Ti3AlC2 machinable ceramics prepared by SHS/PHIP were tested at different temperature. Stress-strain curves at strain rate of 1×10^-3 s^-1 showed that the compressive behavior was the brittle fracture from room temperature to 800℃, but it presented micro-plastic deformation at room temperature. Compressive behavior of Ti3AlC2 showed plastic deformation form 800℃ to 1300℃. Meanwhile, plastic behavior was found to increase with increasing of the temperature. The brittle-to-ductile transition temperature (BDTT) was between 800℃ and 1000℃. Stress-strain curves above BDTT showed "harden area", and plastic area was larger than "harden area" with temperature increasing. Buckling of grains, formation of cavity, branching and deformation of main crack were the important mechanism of deformation in the brittle fracture. Plastic deformation of Ti3AlC2 was related to the motion of dislocation.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2008年第A01期244-247,共4页 Rare Metal Materials and Engineering
基金 中国新世纪杰出人才计划资助(NCET2004)
关键词 自蔓延 可加工陶瓷 压缩性能 SHS machinable ceramics compressive deformation
  • 相关文献

参考文献10

  • 1Barsoum M W. Script Mater[J], 2000, 43:285.
  • 2Wang Xiaohui(王晓辉).Synthesis and Properties of Layered Machinable Ceramics Ti3AlC2 and Ti24lC(层状Ti3AlC2和Ti2AlC陶瓷的合成和性能)[D].Shenyang:The Metal Institute of Chinese Academy of Science,2003.148.
  • 3Aiguo Z, Changan W, Yong H. Materials Science and Engineering A[J], 2003, 352:333.
  • 4李翀,赫小东,朱春城,柏跃磊.三元层状陶瓷Ti_3SiC_2的高温氧化行为[J].材料工程,2006,34(z1):168-171. 被引量:12
  • 5Hongxiang Z, Zhenying H, Mingxing A et al. J Am Ceram Soc[J], 2005, 88(11): 3270.
  • 6Myhra S, Crossley J A A, Barsoum M W. J Ph Chem Sol[J], 2001, 62: 811.
  • 7Finkel P, Barsoum M W, EI-Raghy T. J App Phys[J], 2000, 87(4): 1701.
  • 8Xiaohui W, Yanchun Z. JMater Chem[J], 2002, 12(3): 455.
  • 9Lee D B, Park S W. Mater Sci Eng[J], 2006, 434 A: 147.
  • 10Gumbsch P, Riedle J, Hartmaier A et al. Science[J], 1998, 282: 1293.

二级参考文献11

  • 1[1]BARSOUM M W,EI-RAGHY T.Synthesis and characterization of a remarkable ceramic:Ti3SiC2[J].J Am Ceram Soc,1996,79(7):1945-1956.
  • 2[4]BARSOUM M W,EI-RAGHY T.A progress report on Ti3SiC2,Ti3GeC2,and H-phase,M2BX[J].J Mater Syth Process,1997,5:197-216.
  • 3[5]RACAULT C,LANGLASIA F,NASLAIN R.On the chemical vapor desposition of Ti3SiC2 from gas mixture[J].J Mater Sci,1994,29:3341-3384.
  • 4[6]MERAZHNOV A G.Solid flames:discoveries,conpects,and horizons of cognition[J].Combust Sci and Tech,1994,23(1):27-32.
  • 5[7]DALIBORR VOITECH,BARBORA,TOMAS KUBATIK.High temperature oxidation of titanium-silicon alloys[J].Materials Science Engineerin,2003,A (361):50-57.
  • 6[8]RADHAKRISHNAN R,WILLIAMS J J,AKINC M.Synthesis and high-temperature stability of Ti3SiC2[J].Journal of Alloys and Compounds,1999,285:85-88.
  • 7[9]BARSOUM M W,EI-RAGHY T.Oxidation of Ti3SiC2 in air[J].J Electrochem Soc,1997,14:2508-2516.
  • 8[10]SUN Z,ZHOU Y,LI M.Oxidation behavior of Ti3SiC2-based ceramic at 900~1300℃ in air[J].Corrosion Science,2001,43:1095-1109.
  • 9[11]TANG K,WANG CA.Analysis on preferred orientation and purity estimation of Ti3SiC2[J].J Alloys and Compounds,2001,329:136-141.
  • 10李世波,成来飞,张立同.新型层状陶瓷材料Ti_3SiC_2[J].材料导报,2001,15(9):26-29. 被引量:15

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部