期刊文献+

一维p-Laplacian方程多点边值问题迭代解的存在性 被引量:5

Existence and Iteration of Solutions for a Multi-point Boundary Value Problem with a p-Laplacian Operator
原文传递
导出
摘要 运用Mawhin定理、上下解方法以及单调迭代技巧得到了下列具有p-Laplacian算子的多点边值问题{(φ_p(u′))′+f(t,u)=0,0≤t≤1,u(0)=0,u(1)=∑_(i=1)^(m-2)γ_iu(η_i)迭代解的存在性.进一步地,在允许f(t,u)变号的前提下,我们给出充分条件以保证解的非负性和非正性. By employing Mawhin's continuation theorem, we obtain the existence of solutions and establish a corresponding iterative scheme for BVP, {(φp(u′))′+f(t,u)=0,0≤t≤1, u(0)=0,u(1)=∑(i=1)^(m-2)γiu(ηi) The upper and lower solutions method and monotone iterative technique are used. Furthermore, we impose sufficient conditions on f(t, u) which can guarantee the existence of nonnegative or nonpositive solutions even when f(t, u) is allowed to change sign.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第3期447-456,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10771065;10371006) 河北省自然科学基金(A2007001027)
关键词 Mawhin定理 单调迭代 多点边值问题 Mawhin's continuation theorem iteration boundary value problem
  • 相关文献

参考文献1

二级参考文献9

  • 1Agarwai, Ravi P., Donal O'Regan. Singular Differential and Integral Equations with Applications. Kluwer Academic Publishers, Boston, 2003.
  • 2Agarwal, Ravi P., Lu, Haishen, Donal O'Regan. Existence theorems for the One-dimensional p-Laplacian equation with sign changing nonlinearities. Appl. Math. Comput., 143:15-38 (2003).
  • 3Agarwal, Ravi P., Donal O'Regan. Nonlinear superlinear singular and nonsingular second order boundary value problems. J. Differential Equations., 143:60 95 (1998).
  • 4Bai, Chuan-zhi, Fang, Jin-xuan. Existence of multiple positive solutions for nonlinear m-point boundary value problems. Appl. Math. Comput., 140:297-305 (2003).
  • 5Chaitan P.Gupta, S.K.Ntouyas, P.Ch.Tsamatos. Solvability of an m-point boundary value problem for second order ordinary differential equation. J. Math. Anal. Appl., 189:576-584 (1995).
  • 6Jiang, Daqing, Xu, Xiaojie. Multiple positive solutions to a cl-ass of singular boundary value problem forthe one-dimensional p-Laplacian. Computers and Mathematics with Applications., 47:667-681 (2004).
  • 7Liu, B. Positive solutions of three-point boundary value problems for the one-dimensional p-laplace With infinitely many singularities. Applied Mathematics Letters, 17:655-661 (2004).
  • 8Ma, R., Castaneda, N. Existence of solutions for nonlinear m-point boundary value problem. J. Math.Anal Appl., 256:556-567 (2001).
  • 9Wang, J., Gao, W. A singular boundary value problems for the one-dimensional p-laplace, d. Math. Anal.Appl., 201:851-866 (1996).

同被引文献44

  • 1Zhao Zengqin. Solutions and Green' s functions for some linear second-order three-point boundaryvalue problems [ J ]. Computers and Mathematics with Applications,2008, 56 : 104-113.
  • 2Du Xinsheng, Zhao Zengqin. A necessary and sufficient condition for the existence of positive solutions to singular sublinear three- point boundary value problems[ J]. Applied Mathematics and Computation2007, 186:404-413.
  • 3Du Xinsheng, Zhao Zengqin. Existence and uniqueness of positive solutions to a class of singular m-point boundary value problems [ J ]. Applied Mathematics and Computation,2008:487-493.
  • 4BAI Chuanzhi, FAQNG Jinxuan. Existence of muhiple positive so- lutions for nonlinear m-point boundary value problems [ J ]. Ap- plied Mathematics and Computation, 2003,140 ( 2/3 ) :297-305.
  • 5Pei Minghe, Sung Kag Chang. The generalized quasilinearization method for second-order three-point boundary value problems [ J ]. Nonlinear Analysis, 2008,68 ( 9 ) : 2779 -2790.
  • 6Pei Minghe, Sung Kag Chang. A quasilinearization method for sec- ond-order four-point boundary value problems [ J ]. Applied Mathe- matics and Computation,2008,202 ( 1 ) :54-66.
  • 7BESKOS D E. Boundary element methods in dynamic analysis: Part ii(1986-1996)[J].Applied mechanics Reviews, 1997,50: 149-197.
  • 8CHEN J T,WONG F C. Dual (ormulation of multiple reciproc- ity method for the acoustic mode of a cavity with a thin partion [J].Journal of Soundand Vibration, 1998,217: 75-95.
  • 9ANTIPOV Y A,FOKAS A S. The modified Helmholtz equa- tion in a semistrip [J]. Math Proc Cambridge Philos Soc, 2005, 138: 339-365.
  • 10CHENG H, HUANG J, LEITERMAN T. An adaptive fast solver for the modified Helmholtz equation in two dimensions [J]. J Comput Phys,2006,211..616-637.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部