期刊文献+

广义Lipschitz伪压缩映射黏滞迭代逼近方法的强收敛 被引量:1

Strong Convergence Theorems of Viscosity Approximation Methods for Generalized Lipschitz Pseudocontractiive Mappings
原文传递
导出
摘要 K是Banach空间E的一个非空闭凸子集,T:K→K是一个广义Lipschitz伪压缩映射.对Lipschitz强伪压缩映射f:K→K和x1∈K,序列{xn}由下式定义:xn+1=(1-αn-βn)xn+αnf(xn)+βnTxn.在{αn}与{βn}满足合适条件的情况下,每当{z∈K;μn‖xn-z‖^2=inf(y∈K)μn‖xn-y‖^2}∩F(T)≠Ф时,{xn}强收敛到T的某个不动点x^*. Let K be a nonempty closed convex subset of Banach space E, and T : K → K be a generalized Lipschitz pseudocontractive mapping. For any fixed Lipschitz strong pseudocontractive maping f : K → K, the sequence {xn} is given by: For x1∈K, xn+1 = (1 -αn-βn)xn+αn,αnf(xn)+βnTxn. It is shown, under appropriate conditions on the sequences of real numbers {αn } and {βn }, that {xn } strongly converges to some fixed point x^* of T whenever{z∈K;μn‖xn-z‖^2=inf(y∈K)μn‖xn-y‖^2}∩F(T)≠Ф.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第3期501-508,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10771050)
关键词 广义Lipschitz伪压缩映射 黏滞迭代逼近 BANACH极限 强收敛 generalized Lipschitz pseudocontractions viscosity approximations Banach limits strong convergence
  • 相关文献

参考文献1

二级参考文献11

  • 1Tan, K. K., Xu, H. K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl., 178, 301-308 (1993).
  • 2Bruck, R. E.: A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces.Israel J. Math. 32, 107-116 (1979).
  • 3Reich, S.: weak convergence theorem for nonexpansive mappings in Banach spaces, d. Math. Anal. Appl.,67, 274-276 (1979).
  • 4Browder, F. E., Petryshyn, W. V.: The solution by iteration of nonliear functional equations in Banach spaces. Bull. Amer. Math. Soc., 72, 571-575 (1966).
  • 5Deng, L.: Convergence of the Ishikawa iteration process for nonexpansive mappings. J. Math. Anal. Appl.,199, 769-775 (1996).
  • 6Opial, Z.: Weak convergence of successive approximations for nonexpansive mappings. Bull. Amer. Math.Soc., 73, 591-597 (1967).
  • 7Senter, H. F., Dotson, Jr, W. G.: Approximating fixed points of nonexpansive mappings. Proc. Amer.Math. Soc., 44, 375-380 (1974).
  • 8Xu, Z. B., Roach, G. F.: A necessary and sufficient condition for convergence of steepest descent approximation to accretive operator equations. J. Math. Anal. Appl., 167, 340-354 (1992).
  • 9Zhou, H. Y., Jia, Y. T.: Approximating the zeros of accretive operators by the Ishikawa iteration process.Abstract Appl. Anal., 1(2), 153-167 (1996).
  • 10Liu, L. S.: Ishikawa and Mann iterative processes with errors for nonliear strongly accretive mappings in Banach space. J. Math. Anal. Appl., 194, 114-125 (1995).

共引文献5

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部