摘要
K是Banach空间E的一个非空闭凸子集,T:K→K是一个广义Lipschitz伪压缩映射.对Lipschitz强伪压缩映射f:K→K和x1∈K,序列{xn}由下式定义:xn+1=(1-αn-βn)xn+αnf(xn)+βnTxn.在{αn}与{βn}满足合适条件的情况下,每当{z∈K;μn‖xn-z‖^2=inf(y∈K)μn‖xn-y‖^2}∩F(T)≠Ф时,{xn}强收敛到T的某个不动点x^*.
Let K be a nonempty closed convex subset of Banach space E, and T : K → K be a generalized Lipschitz pseudocontractive mapping. For any fixed Lipschitz strong pseudocontractive maping f : K → K, the sequence {xn} is given by: For x1∈K, xn+1 = (1 -αn-βn)xn+αn,αnf(xn)+βnTxn. It is shown, under appropriate conditions on the sequences of real numbers {αn } and {βn }, that {xn } strongly converges to some fixed point x^* of T whenever{z∈K;μn‖xn-z‖^2=inf(y∈K)μn‖xn-y‖^2}∩F(T)≠Ф.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2008年第3期501-508,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10771050)