期刊文献+

子群的θ-偶和群的结构 被引量:4

θ-Pairs for Subgroups and Structure of Groups
原文传递
导出
摘要 研究极大子群和2-极大子群的θ-偶对群结构的影响.设G是有限群,本文得到了:如果G的每一个极大子群M都有极大θ-偶(C,D),使MC=G且C/D是2-闭的,那么G可解;如果G的每一个2-极大子群H都有θ-偶(C,D),使C/D幂零且G=HC,那么G是幂零. We study the influence of θ-pairs for maximal subgroups and 2-maximal subgroups on the structure of group. Let G be a finite groups. If there exists a maximal θ-pair (C, D) such that MC = G and C/D is 2-closed for every maximal subgroup M of G, then G is solvable; If there exists a maximal θ-pair (C, D) such that HC = G and C/D is nilpotent for every 2-maximal subgroups H of G, then G is nilpotent.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第3期559-566,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10571128) 高等学校博士学科点专项科研基金(20060285002)资助项目
关键词 有限群 可解群 θ-偶 finite group solvable group θ-pair
  • 相关文献

参考文献13

  • 1Baumeister B., A characterization of the finite soluble groups, Arch. Math., 1999, 72:167- 176.
  • 2Ballester-Boliches A., Zhao Y. Q., On maximal subgroups of finite groups and theta pairs, Comm. Algebra, 1996, 9-4: 4199-4209.
  • 3Conway J. H., Norton S. P., Parker R. A., Wilson R. A., Atlas of finite groups, Oxford, New York: Oxford Univ. Press (Clarendon), 1985.
  • 4Deskins W. E., A note on the index complex of a maximal subgroup, Arch. Math. (Basel), 1990, 54: 236-240.
  • 5Guo X. Y., On theta pairs for a maximal subgroup, Comm. Algebra, 1994, 22: 4653-4659.
  • 6Li S. R., A Note on theta pairs for maximal subgroups, Comm. Algebra., 1998, 26:4277- 4284.
  • 7Li X. H., Li S. H., Theta-pairs and the structure of finite groups, Siberian Mathematical Journal, 2004, 45(3): 557- 561.
  • 8Li S. R., Zhao Y. Q., On θ-pairs for maximal subgroups, J. Pure Appl. Algebra, 2000, 147(2): 133-142.
  • 9Mukherjee N. P., Bhattacharya P., On theta pairs for a maximal subgroup, Proc. Amer. Math. Soc., 1990, 109: 589-596.
  • 10Wang Y. M., C-normality of groups and its properties, J. Algebra, 1996, 180: 954-965.

同被引文献32

  • 1赵耀庆,廖洪西.极大子群的指数复合与有限群的可解性[J].广西大学学报(自然科学版),1995,20(3):288-290. 被引量:2
  • 2黄建红,郭文彬.有限群的s-条件置换子群[J].数学年刊(A辑),2007,28(1):17-26. 被引量:16
  • 3曾利江.关于幂零群一个定理的推广[J].山东大学学报(理学版),2007,42(4):91-94. 被引量:9
  • 4赵耀庆.有限群极大子群的θ-子群偶[J].数学学报(中文版),1997,40(1):67-72. 被引量:24
  • 5Green J A. On the indeeomposable representations of finite group[J]. Math Z, 1959,70:430-445.
  • 6Brauer R, Nesbitt C J. On the modular representation of groups of finite order Ⅰ[J]. Univ of Toronto Studies Math Ser,1937,4:159-170.
  • 7Brauer R, Tate J. On the characters of finite groups[J]. Ann of Math,1962,2:1-7.
  • 8Benard M. Schur indices and cyclic defect groups[J]. Ann of Math,1976,103:283-304.
  • 9Brauer R, Feit W. On the number of irreducible characters of finite groups in a given block[J]. Proc Nat Acad Sci U. S. A,1959,45:361-365.
  • 10Brauer R. Representations of Finite Groups, Lectures on Modern Mathematics[M]. Wiley, New York,1963,1:133-175.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部