摘要
主要研究作用在n维欧氏空间R^n上的离散交叉积■_n■_αG_A,b_1,…,b_n的代数性质与因子分类.首先证明了该交叉积是内射的;其次给出了该交叉积为因子的一些充要条件;最后讨论该交叉积为因子时究竟是几型因子.
The topic of this paper is on the algebraic property and factor classification of the discrete crossed products An×αGA,b1,…,bn, acting on the Euclidean space R^n. Firstly, we show that this crossed product is injective. Secondly, we give some sufficient and necessary condition for the crossed product to be a factor. Lastly, we discuss the factor type of this crossed product when it is a factor.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2008年第3期607-616,共10页
Acta Mathematica Sinica:Chinese Series
基金
浙江省教育厅科研计划资助项目(20070677)
关键词
离散交叉积
遍历作用
内射
discrete crossed product
ergodic action
injective