期刊文献+

作用在n维欧氏空间R^n上的离散交叉积

Discrete Crossed Products Acting on Euclidean Space R^n
原文传递
导出
摘要 主要研究作用在n维欧氏空间R^n上的离散交叉积■_n■_αG_A,b_1,…,b_n的代数性质与因子分类.首先证明了该交叉积是内射的;其次给出了该交叉积为因子的一些充要条件;最后讨论该交叉积为因子时究竟是几型因子. The topic of this paper is on the algebraic property and factor classification of the discrete crossed products An×αGA,b1,…,bn, acting on the Euclidean space R^n. Firstly, we show that this crossed product is injective. Secondly, we give some sufficient and necessary condition for the crossed product to be a factor. Lastly, we discuss the factor type of this crossed product when it is a factor.
作者 赵建伟
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第3期607-616,共10页 Acta Mathematica Sinica:Chinese Series
基金 浙江省教育厅科研计划资助项目(20070677)
关键词 离散交叉积 遍历作用 内射 discrete crossed product ergodic action injective
  • 相关文献

参考文献15

  • 1Kadison R. V., Ringrose J., Fundamentals of the theory of operator algebras, Vol. I and II, Orlando: Academic Press, 1983 and 1986.
  • 2Paterson A. L. T., Amenablity, Mathematics surveys and monographs, Vol. 29, American Mathematics Society, Providence, RI, 1988.
  • 3Connes A., Classification of injective factors: case Ⅱ1, Ⅱ∞, Ⅲλ, λ≠ 1, Ann. of Math., 1976, 104(2): 73-115.
  • 4Connes A., Une classification des facteurs de type III, Ann. Sci. E cole Norm. Sup. Paris, 1973, 6: 133-252.
  • 5Sunder V.S., An invitation to von Neumann algebras, New York: Springer-Verlag, 1987.
  • 6Haagerup U., A new proof of the equivalence of injectivity and hyperfiniteness for factors on a separable Hilbert space, J. Fune. Anal., 1985, 62: 160-201.
  • 7Murray F. J. Neumann J. von, On rings of operators, Ann. Math., 1936, 37: 116-229.
  • 8Murray F. J., Neumann J. von, On rings of operators, II, Trans. Amer. Math. Soc., 1937, 41: 208-248.
  • 9Murray F. J., Neumann J. von, On rings of operators, IV, Ann. of Math., 1943, 44: 716-818.
  • 10Powers R. T., Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. Math., 1967, 86: 138-171.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部