期刊文献+

Sobolev圆盘代数的不变子空间

The Invariant Subspaces of the Sobolev Disk Algebra
原文传递
导出
摘要 研究了Sobolev圆盘代数R(D)上乘自变量算子M_z的不变子空间,给出了M_z在任何不变子空间上限制的基本性质,证明了M_z分别限制在两个不变子空间上酉等价当且仅当这两个不变子空间相等,并描述了M_z的一类公共零点在边界的不变子空间的结构. We study the invariant subspaces of the operator Mz on the Sobolev disk algebra R(D). First, we study the multiplication operator Mz restricted to the invariant subspace. Then we show that Mz restricted to one invariant subspace is unitarily equivalent to Mz restricted to another invariant subspace if and only if the two invariant subspaces are equal. We also characterize the invariant subspaces with common zeros on the boundary of the disk.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第3期617-624,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金支持项目(10471041)
关键词 变子空间 Sobolev圆盘代数 酉等价 invariant subspace Sobolev disk algebra unitary equivalence
  • 相关文献

参考文献12

  • 1Herrero D. A., Taylor T. J., Wang Z. Y., Variation of the point spectrum under compace perturbations, Operator Theory: Advances and Applications, 1988, 32: 113-158.
  • 2Jiang C. L., Wang Z. Y., A class of strongly irreducible operators with nice property, J. Operator Theory, 1996, 36: 3-19.
  • 3Jiang C. J., Wang Z. Y., Strongly irreducible operators on Hilbert space, Harlow: Longman, 1998.
  • 4Wang Z. Y., Multiplication operator on Soboiev space, the Dissertation in the first Chinese postdoctoral science symposium, Beijing: National Defence Industry Press, 1993, 1167-1170 .
  • 5Wang Z. Y., Liu Y. Q., Multiplication operators on Sobolev disk algebra, Science in China Set. A Mathematics, 2005, 35(7): 757-773 .
  • 6Jiang C. L., Wang Z. Y., Structure of Hilbert spaces operators, Singapore: World Scientific, 2006.
  • 7Liu Y. Q., Wang Z. Y., Invariant subspances of sobolev sisk algebra, Journal of Mathematical Research and Exposition, 2006, 26(2): 233-238.
  • 8Liu Y. Q, Wang Z. Y., The commutant of the multiplication operators on sobolev disk algebra, J. Ana. Appl., 2004, 2: 65-86.
  • 9Cowen M. J., Douglas R. G., On Moduli for invariant subspaces and other topics, 6th Internat. Cinf. on Operator Theory, Timisoara and Herculane (Romania), June 1-11, 1981, 65-73.
  • 10Cowen M. J., Douglas R. G., Complex geometry and operator theory, Bull. Amer. Math. Soc., 1977, 83: 131-133.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部