期刊文献+

光动力法制备抗小鼠H22肝癌肿瘤疫苗的实验研究

Generation of Antitumor Vaccines for H22 Tumor on Mouse Using Photodynamic Therapy
原文传递
导出
摘要 目的:探讨PDT法制备的抗小鼠H22肝癌肿瘤疫苗的抗瘤效应。方法:昆明鼠60只,随机分为2组,每组30只。实验组:取6-12周龄的昆明鼠背部皮下接种PDT法产生的疫苗,每3天注射一次,每次注射50μl(相当于3×105个细胞),连续两周。一周以后再注射H22肿瘤细胞悬液0.1ml(1×106个细胞);对照组:每周每次注射50μl生理盐水,连续两周。一周以后再注射H22肿瘤细胞悬液0.1ml(1×106个细胞)。比较两组的抑瘤率和生存率。结果:实验组小鼠的抑瘤率、生存率均较对照组有显著提高。结论:PDT法产生的抗小鼠H22肝癌疫苗具有明显的抗瘤效应,该方法有望成为一种临床治疗肿瘤的新方法。 Objective: To test the contribution of the direct effects of PDT on tumor cells, we examined the immunogenicity of PDT-generated murine tumor cell lysates in a preclinical vaccine model. Methods: Sixty Kunming mice (H22 tumor host) were divided into two groups randomly and equally. Six to twelve-week-old animals were vaccinated intradermally on the right shoul der with 50μl of lysates (3 × 10^5 cell equivalents) for experimental group or medium control for control group every three days during two weeks. The animals were rested a week and then inoculated on the flank with 1 × 10^6 tumor cells harvested from ex ponentially growing cultures. And then we compared antitumor rate and survival rate between two groups. Results: Comparing with control group, antitumor rate and survival rate in experimental group increased significantly. Conclusions: Our studies suggest that the direct tumor effects of PDT play an important role in enhancing host antitumor immune response, thus PDT- generated vaccines may have well clinical potential as an adjuvant therapy.
出处 《应用激光》 CSCD 北大核心 2008年第2期167-169,共3页 Applied Laser
关键词 肿瘤疫苗 光动力疗法 昆明鼠 免疫调节 Tumor vaccine photodynamic therapy Kunming mouse immune regulation
  • 相关文献

参考文献10

  • 1Dougherty,T. J. ,Gomer, C. J. , Henderson, B. W. , et al. Photodynamic Therapy [J]. Natl. Cancer Inst., 1998, 90: 889-905.
  • 2Korbelik, M. ,and Dougherty,G. J. Photodynamic therapy-mediated immune response against subcutaneous mouse tumors [J]. Cancer Res., 1999, 59: 1941-1946
  • 3Gollnick, S. O., Liu, X., Owczarczak, B., Musser, D. A. , et al. Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo [J]. Cancer Res., 1997, 57: 3904-3909.
  • 4Korbelik M, Sun J, Cecic I. Photodynamic therapy-inducedcell surface expression and release of heat shock proteins: relevance for tumor response [J]. Cancer Res., 2005, 65: 1018-1026.
  • 5Cecic I, Korbelik M. Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors [J].Cancer Lett., 2002, 183:43-51.
  • 6Gollnick SO, Evans SS, Baumann H, et al. Role of cytokines in photodynamic therapy-induced local and systemic inflammation [J]. Br J Cancer, 2003, 88: 1772 -1779.
  • 7Sinkovics, J. G., and Horvath, J. C. Vaccination a- gainst human cancers [J]. Int. J. Oncol. , 2000, 16: 81-96.
  • 8Banehereau, J., Sehuler-Thurner, B., Palueka, A. K., et al. Dendritic cells as vectors for therapy [J]. Cell, 2001, 106: 271-274.
  • 9Bodey,B. , Bodey,B. , Jr. , Siegel, S. E. , et al. Failure of cancer vaccines : the significant limitations of their approach to immunotherapy[J]. Anticancer Res., 2000, 20:2665-2676.
  • 10Korbelik M, Cecic I. Mechanism of tumor destruction by photodynamic therapy [M]. In: Nalwa HS (ed) Handbook of Photochemistry and Photobiology, vol 4. American Scientific Publishers, Stevenson Ranch. 2003; 39-77.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部